^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * This file is subject to the terms and conditions of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * License. See the file "COPYING" in the main directory of this archive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (C) 1995, 1996 Paul M. Antoine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Copyright (C) 1998 Ulf Carlsson
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * Copyright (C) 1999 Silicon Graphics, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * Copyright (C) 2014, Imagination Technologies Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/bug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/compiler.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/context_tracking.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/cpu_pm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/kexec.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/extable.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <linux/sched/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include <linux/sched/debug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <linux/kallsyms.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <linux/memblock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <linux/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include <linux/kgdb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #include <linux/kdebug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #include <linux/kprobes.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #include <linux/notifier.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #include <linux/kdb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #include <linux/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #include <linux/perf_event.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #include <asm/addrspace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #include <asm/bootinfo.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #include <asm/branch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #include <asm/break.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #include <asm/cop2.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #include <asm/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #include <asm/cpu-type.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #include <asm/dsp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #include <asm/fpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #include <asm/fpu_emulator.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #include <asm/idle.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #include <asm/isa-rev.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #include <asm/mips-cps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #include <asm/mips-r2-to-r6-emul.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #include <asm/mipsregs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #include <asm/mipsmtregs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #include <asm/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #include <asm/msa.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #include <asm/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #include <asm/sections.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #include <asm/siginfo.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #include <asm/tlbdebug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #include <asm/traps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #include <asm/watch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #include <asm/mmu_context.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #include <asm/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #include <asm/stacktrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #include <asm/tlbex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #include <asm/uasm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #include <asm/mach-loongson64/cpucfg-emul.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) extern void check_wait(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) extern asmlinkage void rollback_handle_int(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) extern asmlinkage void handle_int(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) extern asmlinkage void handle_adel(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) extern asmlinkage void handle_ades(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) extern asmlinkage void handle_ibe(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) extern asmlinkage void handle_dbe(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) extern asmlinkage void handle_sys(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) extern asmlinkage void handle_bp(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) extern asmlinkage void handle_ri(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) extern asmlinkage void handle_ri_rdhwr_tlbp(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) extern asmlinkage void handle_ri_rdhwr(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) extern asmlinkage void handle_cpu(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) extern asmlinkage void handle_ov(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) extern asmlinkage void handle_tr(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) extern asmlinkage void handle_msa_fpe(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) extern asmlinkage void handle_fpe(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) extern asmlinkage void handle_ftlb(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) extern asmlinkage void handle_gsexc(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) extern asmlinkage void handle_msa(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) extern asmlinkage void handle_mdmx(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) extern asmlinkage void handle_watch(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) extern asmlinkage void handle_mt(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) extern asmlinkage void handle_dsp(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) extern asmlinkage void handle_mcheck(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) extern asmlinkage void handle_reserved(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) extern void tlb_do_page_fault_0(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) void (*board_be_init)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) void (*board_nmi_handler_setup)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) void (*board_ejtag_handler_setup)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) void (*board_bind_eic_interrupt)(int irq, int regset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) void (*board_ebase_setup)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) void(*board_cache_error_setup)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) static void show_raw_backtrace(unsigned long reg29, const char *loglvl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) unsigned long *sp = (unsigned long *)(reg29 & ~3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) printk("%sCall Trace:", loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #ifdef CONFIG_KALLSYMS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) printk("%s\n", loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) while (!kstack_end(sp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) unsigned long __user *p =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) (unsigned long __user *)(unsigned long)sp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) if (__get_user(addr, p)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) printk("%s (Bad stack address)", loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) if (__kernel_text_address(addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) print_ip_sym(loglvl, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) printk("%s\n", loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #ifdef CONFIG_KALLSYMS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) int raw_show_trace;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) static int __init set_raw_show_trace(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) raw_show_trace = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) __setup("raw_show_trace", set_raw_show_trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) const char *loglvl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) unsigned long sp = regs->regs[29];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) unsigned long ra = regs->regs[31];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) unsigned long pc = regs->cp0_epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) if (!task)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) task = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) show_raw_backtrace(sp, loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) printk("%sCall Trace:\n", loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) print_ip_sym(loglvl, pc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) pc = unwind_stack(task, &sp, pc, &ra);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) } while (pc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) pr_cont("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) * This routine abuses get_user()/put_user() to reference pointers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) * with at least a bit of error checking ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) static void show_stacktrace(struct task_struct *task,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) const struct pt_regs *regs, const char *loglvl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) const int field = 2 * sizeof(unsigned long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) long stackdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) printk("%sStack :", loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) while ((unsigned long) sp & (PAGE_SIZE - 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) if (i && ((i % (64 / field)) == 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) pr_cont("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) printk("%s ", loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) if (i > 39) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) pr_cont(" ...");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) if (__get_user(stackdata, sp++)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) pr_cont(" (Bad stack address)");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) pr_cont(" %0*lx", field, stackdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) pr_cont("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) show_backtrace(task, regs, loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) struct pt_regs regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) mm_segment_t old_fs = get_fs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) regs.cp0_status = KSU_KERNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) if (sp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) regs.regs[29] = (unsigned long)sp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) regs.regs[31] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) regs.cp0_epc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) if (task && task != current) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) regs.regs[29] = task->thread.reg29;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) regs.regs[31] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) regs.cp0_epc = task->thread.reg31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) prepare_frametrace(®s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) * show_stack() deals exclusively with kernel mode, so be sure to access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) * the stack in the kernel (not user) address space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) set_fs(KERNEL_DS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) show_stacktrace(task, ®s, loglvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) set_fs(old_fs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) static void show_code(unsigned int __user *pc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) long i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) unsigned short __user *pc16 = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) printk("Code:");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) if ((unsigned long)pc & 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) for(i = -3 ; i < 6 ; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) unsigned int insn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) pr_cont(" (Bad address in epc)\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) pr_cont("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) static void __show_regs(const struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) const int field = 2 * sizeof(unsigned long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) unsigned int cause = regs->cp0_cause;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) unsigned int exccode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) show_regs_print_info(KERN_DEFAULT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) * Saved main processor registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) for (i = 0; i < 32; ) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) if ((i % 4) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) printk("$%2d :", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) if (i == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) pr_cont(" %0*lx", field, 0UL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) else if (i == 26 || i == 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) pr_cont(" %*s", field, "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) pr_cont(" %0*lx", field, regs->regs[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) if ((i % 4) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) pr_cont("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) #ifdef CONFIG_CPU_HAS_SMARTMIPS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) printk("Acx : %0*lx\n", field, regs->acx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) if (MIPS_ISA_REV < 6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) printk("Hi : %0*lx\n", field, regs->hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) printk("Lo : %0*lx\n", field, regs->lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) * Saved cp0 registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) (void *) regs->cp0_epc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) printk("ra : %0*lx %pS\n", field, regs->regs[31],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) (void *) regs->regs[31]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) printk("Status: %08x ", (uint32_t) regs->cp0_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) if (cpu_has_3kex) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) if (regs->cp0_status & ST0_KUO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) pr_cont("KUo ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) if (regs->cp0_status & ST0_IEO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) pr_cont("IEo ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) if (regs->cp0_status & ST0_KUP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) pr_cont("KUp ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) if (regs->cp0_status & ST0_IEP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) pr_cont("IEp ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) if (regs->cp0_status & ST0_KUC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) pr_cont("KUc ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) if (regs->cp0_status & ST0_IEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) pr_cont("IEc ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) } else if (cpu_has_4kex) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) if (regs->cp0_status & ST0_KX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) pr_cont("KX ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) if (regs->cp0_status & ST0_SX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) pr_cont("SX ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) if (regs->cp0_status & ST0_UX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) pr_cont("UX ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) switch (regs->cp0_status & ST0_KSU) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) case KSU_USER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) pr_cont("USER ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) case KSU_SUPERVISOR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) pr_cont("SUPERVISOR ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) case KSU_KERNEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) pr_cont("KERNEL ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) pr_cont("BAD_MODE ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) if (regs->cp0_status & ST0_ERL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) pr_cont("ERL ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) if (regs->cp0_status & ST0_EXL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) pr_cont("EXL ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) if (regs->cp0_status & ST0_IE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) pr_cont("IE ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) pr_cont("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) if (1 <= exccode && exccode <= 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) printk("PrId : %08x (%s)\n", read_c0_prid(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) cpu_name_string());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) * FIXME: really the generic show_regs should take a const pointer argument.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) void show_regs(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) __show_regs(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) void show_registers(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) const int field = 2 * sizeof(unsigned long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) mm_segment_t old_fs = get_fs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) __show_regs(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) print_modules();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) current->comm, current->pid, current_thread_info(), current,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) field, current_thread_info()->tp_value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) if (cpu_has_userlocal) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) unsigned long tls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) tls = read_c0_userlocal();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) if (tls != current_thread_info()->tp_value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) printk("*HwTLS: %0*lx\n", field, tls);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) if (!user_mode(regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) /* Necessary for getting the correct stack content */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) set_fs(KERNEL_DS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) show_stacktrace(current, regs, KERN_DEFAULT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) show_code((unsigned int __user *) regs->cp0_epc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) printk("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) set_fs(old_fs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) static DEFINE_RAW_SPINLOCK(die_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) void __noreturn die(const char *str, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) static int die_counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) int sig = SIGSEGV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) oops_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) SIGSEGV) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) sig = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) console_verbose();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) raw_spin_lock_irq(&die_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) bust_spinlocks(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) printk("%s[#%d]:\n", str, ++die_counter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) show_registers(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) raw_spin_unlock_irq(&die_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) oops_exit();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) if (in_interrupt())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) panic("Fatal exception in interrupt");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) if (panic_on_oops)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) panic("Fatal exception");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) if (regs && kexec_should_crash(current))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) crash_kexec(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) do_exit(sig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) extern struct exception_table_entry __start___dbe_table[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) extern struct exception_table_entry __stop___dbe_table[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) __asm__(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) " .section __dbe_table, \"a\"\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) " .previous \n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) /* Given an address, look for it in the exception tables. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) const struct exception_table_entry *e;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) e = search_extable(__start___dbe_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) __stop___dbe_table - __start___dbe_table, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) if (!e)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) e = search_module_dbetables(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) return e;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) asmlinkage void do_be(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) const int field = 2 * sizeof(unsigned long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) const struct exception_table_entry *fixup = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) int data = regs->cp0_cause & 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) int action = MIPS_BE_FATAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) /* XXX For now. Fixme, this searches the wrong table ... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) if (data && !user_mode(regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) fixup = search_dbe_tables(exception_epc(regs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) if (fixup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) action = MIPS_BE_FIXUP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) if (board_be_handler)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) action = board_be_handler(regs, fixup != NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) mips_cm_error_report();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) switch (action) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) case MIPS_BE_DISCARD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) case MIPS_BE_FIXUP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) if (fixup) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) regs->cp0_epc = fixup->nextinsn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) * Assume it would be too dangerous to continue ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) data ? "Data" : "Instruction",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) field, regs->cp0_epc, field, regs->regs[31]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) SIGBUS) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) die_if_kernel("Oops", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) force_sig(SIGBUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) * ll/sc, rdhwr, sync emulation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) #define OPCODE 0xfc000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) #define BASE 0x03e00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) #define RT 0x001f0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) #define OFFSET 0x0000ffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) #define LL 0xc0000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) #define SC 0xe0000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) #define SPEC0 0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) #define SPEC3 0x7c000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) #define RD 0x0000f800
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) #define FUNC 0x0000003f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) #define SYNC 0x0000000f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) #define RDHWR 0x0000003b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) /* microMIPS definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) #define MM_POOL32A_FUNC 0xfc00ffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) #define MM_RDHWR 0x00006b3c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) #define MM_RS 0x001f0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) #define MM_RT 0x03e00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) * The ll_bit is cleared by r*_switch.S
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) unsigned int ll_bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) struct task_struct *ll_task;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) unsigned long value, __user *vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) long offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) * analyse the ll instruction that just caused a ri exception
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) * and put the referenced address to addr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) /* sign extend offset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) offset = opcode & OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) offset <<= 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) offset >>= 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) vaddr = (unsigned long __user *)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) if ((unsigned long)vaddr & 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) return SIGBUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) if (get_user(value, vaddr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) return SIGSEGV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) if (ll_task == NULL || ll_task == current) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) ll_bit = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) ll_bit = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) ll_task = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) regs->regs[(opcode & RT) >> 16] = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) unsigned long __user *vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) unsigned long reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) long offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) * analyse the sc instruction that just caused a ri exception
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) * and put the referenced address to addr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) /* sign extend offset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) offset = opcode & OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) offset <<= 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) offset >>= 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) vaddr = (unsigned long __user *)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) reg = (opcode & RT) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) if ((unsigned long)vaddr & 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) return SIGBUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) if (ll_bit == 0 || ll_task != current) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) regs->regs[reg] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) if (put_user(regs->regs[reg], vaddr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) return SIGSEGV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) regs->regs[reg] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) * opcodes are supposed to result in coprocessor unusable exceptions if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) * executed on ll/sc-less processors. That's the theory. In practice a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) * few processors such as NEC's VR4100 throw reserved instruction exceptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) * instead, so we're doing the emulation thing in both exception handlers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) if ((opcode & OPCODE) == LL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 1, regs, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) return simulate_ll(regs, opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) if ((opcode & OPCODE) == SC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 1, regs, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) return simulate_sc(regs, opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) return -1; /* Must be something else ... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) * Simulate trapping 'rdhwr' instructions to provide user accessible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) * registers not implemented in hardware.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) struct thread_info *ti = task_thread_info(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 1, regs, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) switch (rd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) case MIPS_HWR_CPUNUM: /* CPU number */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) regs->regs[rt] = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) case MIPS_HWR_SYNCISTEP: /* SYNCI length */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) regs->regs[rt] = min(current_cpu_data.dcache.linesz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) current_cpu_data.icache.linesz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) case MIPS_HWR_CC: /* Read count register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) regs->regs[rt] = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) case MIPS_HWR_CCRES: /* Count register resolution */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) switch (current_cpu_type()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) case CPU_20KC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) case CPU_25KF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) regs->regs[rt] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) regs->regs[rt] = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) case MIPS_HWR_ULR: /* Read UserLocal register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) regs->regs[rt] = ti->tp_value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) int rd = (opcode & RD) >> 11;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) int rt = (opcode & RT) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) simulate_rdhwr(regs, rd, rt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) /* Not ours. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) int rd = (opcode & MM_RS) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) int rt = (opcode & MM_RT) >> 21;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) simulate_rdhwr(regs, rd, rt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) /* Not ours. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 1, regs, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) return -1; /* Must be something else ... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) * Loongson-3 CSR instructions emulation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) #define LWC2 0xc8000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) #define RS BASE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) #define CSR_OPCODE2 0x00000118
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) #define CSR_OPCODE2_MASK 0x000007ff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) #define CSR_FUNC_MASK RT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) #define CSR_FUNC_CPUCFG 0x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) static int simulate_loongson3_cpucfg(struct pt_regs *regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) unsigned int opcode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) int op = opcode & OPCODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) int op2 = opcode & CSR_OPCODE2_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) int rd = (opcode & RD) >> 11;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) int rs = (opcode & RS) >> 21;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) __u64 sel = regs->regs[rs];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) /* Do not emulate on unsupported core models. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) regs->regs[rd] = loongson3_cpucfg_read_synthesized(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) ¤t_cpu_data, sel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) /* Not ours. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) asmlinkage void do_ov(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) die_if_kernel("Integer overflow", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) #ifdef CONFIG_MIPS_FP_SUPPORT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) * Send SIGFPE according to FCSR Cause bits, which must have already
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) * been masked against Enable bits. This is impotant as Inexact can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) * happen together with Overflow or Underflow, and `ptrace' can set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) * any bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) int si_code = FPE_FLTUNK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) if (fcr31 & FPU_CSR_INV_X)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) si_code = FPE_FLTINV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) else if (fcr31 & FPU_CSR_DIV_X)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) si_code = FPE_FLTDIV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) else if (fcr31 & FPU_CSR_OVF_X)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) si_code = FPE_FLTOVF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) else if (fcr31 & FPU_CSR_UDF_X)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) si_code = FPE_FLTUND;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) else if (fcr31 & FPU_CSR_INE_X)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) si_code = FPE_FLTRES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) int si_code;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) struct vm_area_struct *vma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) switch (sig) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) case SIGFPE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) force_fcr31_sig(fcr31, fault_addr, current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) case SIGBUS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) case SIGSEGV:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) mmap_read_lock(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) vma = find_vma(current->mm, (unsigned long)fault_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) if (vma && (vma->vm_start <= (unsigned long)fault_addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) si_code = SEGV_ACCERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) si_code = SEGV_MAPERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) mmap_read_unlock(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) force_sig_fault(SIGSEGV, si_code, fault_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) force_sig(sig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) unsigned long old_epc, unsigned long old_ra)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) union mips_instruction inst = { .word = opcode };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) void __user *fault_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) unsigned long fcr31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) int sig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) /* If it's obviously not an FP instruction, skip it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) switch (inst.i_format.opcode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) case cop1_op:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) case cop1x_op:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) case lwc1_op:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) case ldc1_op:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) case swc1_op:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) case sdc1_op:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) * do_ri skipped over the instruction via compute_return_epc, undo
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) * that for the FPU emulator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) regs->cp0_epc = old_epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) regs->regs[31] = old_ra;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) /* Run the emulator */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) &fault_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) * We can't allow the emulated instruction to leave any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) * enabled Cause bits set in $fcr31.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) current->thread.fpu.fcr31 &= ~fcr31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) /* Restore the hardware register state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) own_fpu(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) /* Send a signal if required. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) process_fpemu_return(sig, fault_addr, fcr31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) void __user *fault_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) int sig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) SIGFPE) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) /* Clear FCSR.Cause before enabling interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) die_if_kernel("FP exception in kernel code", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) if (fcr31 & FPU_CSR_UNI_X) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) * Unimplemented operation exception. If we've got the full
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) * software emulator on-board, let's use it...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) * Force FPU to dump state into task/thread context. We're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) * moving a lot of data here for what is probably a single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) * instruction, but the alternative is to pre-decode the FP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) * register operands before invoking the emulator, which seems
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) * a bit extreme for what should be an infrequent event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) /* Run the emulator */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) &fault_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) * We can't allow the emulated instruction to leave any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) * enabled Cause bits set in $fcr31.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) current->thread.fpu.fcr31 &= ~fcr31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) /* Restore the hardware register state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) own_fpu(1); /* Using the FPU again. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) sig = SIGFPE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) fault_addr = (void __user *) regs->cp0_epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) /* Send a signal if required. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) process_fpemu_return(sig, fault_addr, fcr31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) * emulated more than some threshold number of instructions, force migration to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) * a "CPU" that has FP support.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) static void mt_ase_fp_affinity(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) #ifdef CONFIG_MIPS_MT_FPAFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) if (mt_fpemul_threshold > 0 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) * If there's no FPU present, or if the application has already
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) * restricted the allowed set to exclude any CPUs with FPUs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) * we'll skip the procedure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) cpumask_t tmask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) current->thread.user_cpus_allowed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) = current->cpus_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) cpumask_and(&tmask, ¤t->cpus_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) &mt_fpu_cpumask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) set_cpus_allowed_ptr(current, &tmask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) set_thread_flag(TIF_FPUBOUND);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) #endif /* CONFIG_MIPS_MT_FPAFF */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) #else /* !CONFIG_MIPS_FP_SUPPORT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) unsigned long old_epc, unsigned long old_ra)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) #endif /* !CONFIG_MIPS_FP_SUPPORT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) const char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) char b[40];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) SIGTRAP) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) SIGTRAP) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) * A short test says that IRIX 5.3 sends SIGTRAP for all trap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) * insns, even for trap and break codes that indicate arithmetic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) * failures. Weird ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) * But should we continue the brokenness??? --macro
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) switch (code) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) case BRK_OVERFLOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) case BRK_DIVZERO:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) die_if_kernel(b, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) force_sig_fault(SIGFPE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) (void __user *) regs->cp0_epc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) case BRK_BUG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) die_if_kernel("Kernel bug detected", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) force_sig(SIGTRAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) case BRK_MEMU:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) * This breakpoint code is used by the FPU emulator to retake
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) * control of the CPU after executing the instruction from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) * delay slot of an emulated branch.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) * Terminate if exception was recognized as a delay slot return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) * otherwise handle as normal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) if (do_dsemulret(regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) die_if_kernel("Math emu break/trap", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) force_sig(SIGTRAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) die_if_kernel(b, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) if (si_code) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) force_sig_fault(SIGTRAP, si_code, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) force_sig(SIGTRAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) asmlinkage void do_bp(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) unsigned long epc = msk_isa16_mode(exception_epc(regs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) unsigned int opcode, bcode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) mm_segment_t seg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) seg = get_fs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) if (!user_mode(regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) set_fs(KERNEL_DS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) if (get_isa16_mode(regs->cp0_epc)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) u16 instr[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) if (__get_user(instr[0], (u16 __user *)epc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) goto out_sigsegv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) if (!cpu_has_mmips) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) /* MIPS16e mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) bcode = (instr[0] >> 5) & 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) } else if (mm_insn_16bit(instr[0])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) /* 16-bit microMIPS BREAK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) bcode = instr[0] & 0xf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) /* 32-bit microMIPS BREAK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) if (__get_user(instr[1], (u16 __user *)(epc + 2)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) goto out_sigsegv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) opcode = (instr[0] << 16) | instr[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) bcode = (opcode >> 6) & ((1 << 20) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) if (__get_user(opcode, (unsigned int __user *)epc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) goto out_sigsegv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) bcode = (opcode >> 6) & ((1 << 20) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) * There is the ancient bug in the MIPS assemblers that the break
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) * code starts left to bit 16 instead to bit 6 in the opcode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) * Gas is bug-compatible, but not always, grrr...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) * We handle both cases with a simple heuristics. --macro
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) if (bcode >= (1 << 10))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) * notify the kprobe handlers, if instruction is likely to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) * pertain to them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) switch (bcode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) case BRK_UPROBE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) case BRK_UPROBE_XOL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) case BRK_KPROBE_BP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) if (notify_die(DIE_BREAK, "debug", regs, bcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) case BRK_KPROBE_SSTEPBP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) set_fs(seg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) out_sigsegv:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) force_sig(SIGSEGV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) asmlinkage void do_tr(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) u32 opcode, tcode = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) u16 instr[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) mm_segment_t seg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) unsigned long epc = msk_isa16_mode(exception_epc(regs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) seg = get_fs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) if (!user_mode(regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) set_fs(KERNEL_DS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) if (get_isa16_mode(regs->cp0_epc)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) __get_user(instr[1], (u16 __user *)(epc + 2)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) goto out_sigsegv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) opcode = (instr[0] << 16) | instr[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) /* Immediate versions don't provide a code. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) if (!(opcode & OPCODE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) tcode = (opcode >> 12) & ((1 << 4) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) if (__get_user(opcode, (u32 __user *)epc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) goto out_sigsegv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) /* Immediate versions don't provide a code. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) if (!(opcode & OPCODE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) tcode = (opcode >> 6) & ((1 << 10) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) do_trap_or_bp(regs, tcode, 0, "Trap");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) set_fs(seg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) out_sigsegv:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) force_sig(SIGSEGV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) asmlinkage void do_ri(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) unsigned long old_epc = regs->cp0_epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) unsigned long old31 = regs->regs[31];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) unsigned int opcode = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) int status = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) * Avoid any kernel code. Just emulate the R2 instruction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) * as quickly as possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) if (mipsr2_emulation && cpu_has_mips_r6 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) likely(user_mode(regs)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) likely(get_user(opcode, epc) >= 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) unsigned long fcr31 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) status = mipsr2_decoder(regs, opcode, &fcr31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) switch (status) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) case SIGEMT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) case SIGILL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) goto no_r2_instr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) process_fpemu_return(status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) ¤t->thread.cp0_baduaddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) fcr31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) no_r2_instr:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) SIGILL) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) die_if_kernel("Reserved instruction in kernel code", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) if (unlikely(compute_return_epc(regs) < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) if (!get_isa16_mode(regs->cp0_epc)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) if (unlikely(get_user(opcode, epc) < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) status = SIGSEGV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) if (!cpu_has_llsc && status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) status = simulate_llsc(regs, opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) if (status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) status = simulate_rdhwr_normal(regs, opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) if (status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) status = simulate_sync(regs, opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) if (status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) status = simulate_fp(regs, opcode, old_epc, old31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) if (status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) status = simulate_loongson3_cpucfg(regs, opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) } else if (cpu_has_mmips) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) unsigned short mmop[2] = { 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) status = SIGSEGV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) status = SIGSEGV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) opcode = mmop[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) opcode = (opcode << 16) | mmop[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) if (status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) status = simulate_rdhwr_mm(regs, opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) if (status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) status = SIGILL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) if (unlikely(status > 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) regs->cp0_epc = old_epc; /* Undo skip-over. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) regs->regs[31] = old31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) force_sig(status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) * No lock; only written during early bootup by CPU 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) static RAW_NOTIFIER_HEAD(cu2_chain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) int __ref register_cu2_notifier(struct notifier_block *nb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) return raw_notifier_chain_register(&cu2_chain, nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) int cu2_notifier_call_chain(unsigned long val, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) return raw_notifier_call_chain(&cu2_chain, val, v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) struct pt_regs *regs = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) "instruction", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) #ifdef CONFIG_MIPS_FP_SUPPORT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) static int enable_restore_fp_context(int msa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) int err, was_fpu_owner, prior_msa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) bool first_fp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) /* Initialize context if it hasn't been used already */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) first_fp = init_fp_ctx(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) if (first_fp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) err = own_fpu_inatomic(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) if (msa && !err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) enable_msa();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) * with MSA enabled, userspace can see MSACSR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) * and MSA regs, but the values in them are from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) * other task before current task, restore them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) * from saved fp/msa context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) write_msa_csr(current->thread.fpu.msacsr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) * own_fpu_inatomic(1) just restore low 64bit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) * fix the high 64bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) init_msa_upper();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) set_thread_flag(TIF_USEDMSA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) set_thread_flag(TIF_MSA_CTX_LIVE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) * This task has formerly used the FP context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) * If this thread has no live MSA vector context then we can simply
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) * restore the scalar FP context. If it has live MSA vector context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) * (that is, it has or may have used MSA since last performing a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) * function call) then we'll need to restore the vector context. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) * applies even if we're currently only executing a scalar FP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) * instruction. This is because if we were to later execute an MSA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) * instruction then we'd either have to:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) * - Restore the vector context & clobber any registers modified by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) * scalar FP instructions between now & then.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) * or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) * - Not restore the vector context & lose the most significant bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) * of all vector registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) * Neither of those options is acceptable. We cannot restore the least
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) * significant bits of the registers now & only restore the most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) * significant bits later because the most significant bits of any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) * vector registers whose aliased FP register is modified now will have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) * been zeroed. We'd have no way to know that when restoring the vector
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) * context & thus may load an outdated value for the most significant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) * bits of a vector register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) if (!msa && !thread_msa_context_live())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) return own_fpu(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) * This task is using or has previously used MSA. Thus we require
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) * that Status.FR == 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) was_fpu_owner = is_fpu_owner();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) err = own_fpu_inatomic(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) enable_msa();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) write_msa_csr(current->thread.fpu.msacsr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) set_thread_flag(TIF_USEDMSA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) * If this is the first time that the task is using MSA and it has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) * previously used scalar FP in this time slice then we already nave
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) * FP context which we shouldn't clobber. We do however need to clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) * the upper 64b of each vector register so that this task has no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) * opportunity to see data left behind by another.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) if (!prior_msa && was_fpu_owner) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) init_msa_upper();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) if (!prior_msa) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) * Restore the least significant 64b of each vector register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) * from the existing scalar FP context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) _restore_fp(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) * The task has not formerly used MSA, so clear the upper 64b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) * of each vector register such that it cannot see data left
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) * behind by another task.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) init_msa_upper();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) /* We need to restore the vector context. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) restore_msa(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) /* Restore the scalar FP control & status register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) if (!was_fpu_owner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) write_32bit_cp1_register(CP1_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) current->thread.fpu.fcr31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) #else /* !CONFIG_MIPS_FP_SUPPORT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) static int enable_restore_fp_context(int msa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) return SIGILL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) #endif /* CONFIG_MIPS_FP_SUPPORT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) asmlinkage void do_cpu(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) unsigned int __user *epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) unsigned long old_epc, old31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) unsigned int opcode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) unsigned int cpid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) int status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) if (cpid != 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) die_if_kernel("do_cpu invoked from kernel context!", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) switch (cpid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) epc = (unsigned int __user *)exception_epc(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) old_epc = regs->cp0_epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) old31 = regs->regs[31];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) opcode = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) status = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) if (unlikely(compute_return_epc(regs) < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) if (!get_isa16_mode(regs->cp0_epc)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) if (unlikely(get_user(opcode, epc) < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) status = SIGSEGV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) if (!cpu_has_llsc && status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) status = simulate_llsc(regs, opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) if (status < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) status = SIGILL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) if (unlikely(status > 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) regs->cp0_epc = old_epc; /* Undo skip-over. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) regs->regs[31] = old31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) force_sig(status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) #ifdef CONFIG_MIPS_FP_SUPPORT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) * The COP3 opcode space and consequently the CP0.Status.CU3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) * bit and the CP0.Cause.CE=3 encoding have been removed as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) * up the space has been reused for COP1X instructions, that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) * are enabled by the CP0.Status.CU1 bit and consequently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) * exceptions. Some FPU-less processors that implement one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) * of these ISAs however use this code erroneously for COP1X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) * instructions. Therefore we redirect this trap to the FP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) * emulator too.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) case 1: {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) void __user *fault_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) unsigned long fcr31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) int err, sig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) err = enable_restore_fp_context(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) if (raw_cpu_has_fpu && !err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) &fault_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) * We can't allow the emulated instruction to leave
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) * any enabled Cause bits set in $fcr31.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) current->thread.fpu.fcr31 &= ~fcr31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) /* Send a signal if required. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) mt_ase_fp_affinity();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) #else /* CONFIG_MIPS_FP_SUPPORT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) #endif /* CONFIG_MIPS_FP_SUPPORT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) /* Clear MSACSR.Cause before enabling interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) force_sig(SIGFPE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) asmlinkage void do_msa(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) die_if_kernel("do_msa invoked from kernel context!", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) err = enable_restore_fp_context(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) asmlinkage void do_mdmx(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) * Called with interrupts disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) asmlinkage void do_watch(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) * Clear WP (bit 22) bit of cause register so we don't loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) * forever.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) clear_c0_cause(CAUSEF_WP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) * If the current thread has the watch registers loaded, save
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) * their values and send SIGTRAP. Otherwise another thread
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) * left the registers set, clear them and continue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) mips_read_watch_registers();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) mips_clear_watch_registers();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) asmlinkage void do_mcheck(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) int multi_match = regs->cp0_status & ST0_TS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) mm_segment_t old_fs = get_fs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) show_regs(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) if (multi_match) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) dump_tlb_regs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) pr_info("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) dump_tlb_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) if (!user_mode(regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) set_fs(KERNEL_DS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) show_code((unsigned int __user *) regs->cp0_epc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) set_fs(old_fs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) * Some chips may have other causes of machine check (e.g. SB1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) * graduation timer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) panic("Caught Machine Check exception - %scaused by multiple "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) "matching entries in the TLB.",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) (multi_match) ? "" : "not ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) asmlinkage void do_mt(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) int subcode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) >> VPECONTROL_EXCPT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) switch (subcode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) printk(KERN_DEBUG "Thread Underflow\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) printk(KERN_DEBUG "Thread Overflow\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) printk(KERN_DEBUG "Gating Storage Exception\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) printk(KERN_DEBUG "YIELD Scheduler Exception\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) subcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) die_if_kernel("MIPS MT Thread exception in kernel", regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) asmlinkage void do_dsp(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) if (cpu_has_dsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) panic("Unexpected DSP exception");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) asmlinkage void do_reserved(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) * Game over - no way to handle this if it ever occurs. Most probably
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) * caused by a new unknown cpu type or after another deadly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) * hard/software error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) show_regs(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) panic("Caught reserved exception %ld - should not happen.",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) (regs->cp0_cause & 0x7f) >> 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) static int __initdata l1parity = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) static int __init nol1parity(char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) l1parity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) __setup("nol1par", nol1parity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) static int __initdata l2parity = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) static int __init nol2parity(char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) l2parity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) __setup("nol2par", nol2parity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) * Some MIPS CPUs can enable/disable for cache parity detection, but do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) * it different ways.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) static inline __init void parity_protection_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) #define ERRCTL_PE 0x80000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) #define ERRCTL_L2P 0x00800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) if (mips_cm_revision() >= CM_REV_CM3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) ulong gcr_ectl, cp0_ectl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) * With CM3 systems we need to ensure that the L1 & L2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) * parity enables are set to the same value, since this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) * is presumed by the hardware engineers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) * If the user disabled either of L1 or L2 ECC checking,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) * disable both.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) l1parity &= l2parity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) l2parity &= l1parity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) /* Probe L1 ECC support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) cp0_ectl = read_c0_ecc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) write_c0_ecc(cp0_ectl | ERRCTL_PE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) cp0_ectl = read_c0_ecc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) /* Probe L2 ECC support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) gcr_ectl = read_gcr_err_control();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) !(cp0_ectl & ERRCTL_PE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) * One of L1 or L2 ECC checking isn't supported,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) * so we cannot enable either.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) l1parity = l2parity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) /* Configure L1 ECC checking */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) if (l1parity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) cp0_ectl |= ERRCTL_PE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) cp0_ectl &= ~ERRCTL_PE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) write_c0_ecc(cp0_ectl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) /* Configure L2 ECC checking */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) if (l2parity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) write_gcr_err_control(gcr_ectl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) gcr_ectl = read_gcr_err_control();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) WARN_ON(!!gcr_ectl != l2parity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) pr_info("Cache parity protection %sabled\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) l1parity ? "en" : "dis");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) switch (current_cpu_type()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) case CPU_24K:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) case CPU_34K:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) case CPU_74K:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) case CPU_1004K:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) case CPU_1074K:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) case CPU_INTERAPTIV:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) case CPU_PROAPTIV:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) case CPU_P5600:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) case CPU_QEMU_GENERIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) case CPU_P6600:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) unsigned long errctl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) unsigned int l1parity_present, l2parity_present;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) errctl = read_c0_ecc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) /* probe L1 parity support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) write_c0_ecc(errctl | ERRCTL_PE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) l1parity_present = (read_c0_ecc() & ERRCTL_PE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) /* probe L2 parity support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) write_c0_ecc(errctl|ERRCTL_L2P);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) if (l1parity_present && l2parity_present) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) if (l1parity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) errctl |= ERRCTL_PE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) if (l1parity ^ l2parity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) errctl |= ERRCTL_L2P;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) } else if (l1parity_present) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) if (l1parity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) errctl |= ERRCTL_PE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) } else if (l2parity_present) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) if (l2parity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) errctl |= ERRCTL_L2P;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) /* No parity available */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) write_c0_ecc(errctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) errctl = read_c0_ecc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) if (l1parity_present)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) printk(KERN_INFO "Cache parity protection %sabled\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) (errctl & ERRCTL_PE) ? "en" : "dis");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) if (l2parity_present) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) if (l1parity_present && l1parity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) errctl ^= ERRCTL_L2P;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) printk(KERN_INFO "L2 cache parity protection %sabled\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) (errctl & ERRCTL_L2P) ? "en" : "dis");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) case CPU_5KC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) case CPU_5KE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) case CPU_LOONGSON32:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) write_c0_ecc(0x80000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) /* Set the PE bit (bit 31) in the c0_errctl register. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) printk(KERN_INFO "Cache parity protection %sabled\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) (read_c0_ecc() & 0x80000000) ? "en" : "dis");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) case CPU_20KC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) case CPU_25KF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) /* Clear the DE bit (bit 16) in the c0_status register. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) printk(KERN_INFO "Enable cache parity protection for "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) "MIPS 20KC/25KF CPUs.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) clear_c0_status(ST0_DE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) asmlinkage void cache_parity_error(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) const int field = 2 * sizeof(unsigned long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) unsigned int reg_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) /* For the moment, report the problem and hang. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) printk("Cache error exception:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) reg_val = read_c0_cacheerr();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) printk("c0_cacheerr == %08x\n", reg_val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) reg_val & (1<<30) ? "secondary" : "primary",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) reg_val & (1<<31) ? "data" : "insn");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) if ((cpu_has_mips_r2_r6) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) reg_val & (1<<29) ? "ED " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) reg_val & (1<<28) ? "ET " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) reg_val & (1<<27) ? "ES " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) reg_val & (1<<26) ? "EE " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) reg_val & (1<<25) ? "EB " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) reg_val & (1<<24) ? "EI " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) reg_val & (1<<23) ? "E1 " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) reg_val & (1<<22) ? "E0 " : "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) pr_err("Error bits: %s%s%s%s%s%s%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) reg_val & (1<<29) ? "ED " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) reg_val & (1<<28) ? "ET " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) reg_val & (1<<26) ? "EE " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) reg_val & (1<<25) ? "EB " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) reg_val & (1<<24) ? "EI " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) reg_val & (1<<23) ? "E1 " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) reg_val & (1<<22) ? "E0 " : "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) if (reg_val & (1<<22))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) if (reg_val & (1<<23))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) panic("Can't handle the cache error!");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) asmlinkage void do_ftlb(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) const int field = 2 * sizeof(unsigned long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) unsigned int reg_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) /* For the moment, report the problem and hang. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) if ((cpu_has_mips_r2_r6) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) read_c0_ecc());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) reg_val = read_c0_cacheerr();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) pr_err("c0_cacheerr == %08x\n", reg_val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) if ((reg_val & 0xc0000000) == 0xc0000000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) pr_err("Decoded c0_cacheerr: FTLB parity error\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) reg_val & (1<<30) ? "secondary" : "primary",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) reg_val & (1<<31) ? "data" : "insn");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) pr_err("FTLB error exception\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) /* Just print the cacheerr bits for now */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) cache_parity_error();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) LOONGSON_DIAG1_EXCCODE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) enum ctx_state prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) prev_state = exception_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) switch (exccode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) case 0x08:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) /* Undocumented exception, will trigger on certain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) * also-undocumented instructions accessible from userspace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) * Processor state is not otherwise corrupted, but currently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) * we don't know how to proceed. Maybe there is some
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) * undocumented control flag to enable the instructions?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) force_sig(SIGILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) /* None of the other exceptions, documented or not, have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) * further details given; none are encountered in the wild
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) * either. Panic in case some of them turn out to be fatal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) show_regs(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) panic("Unhandled Loongson exception - GSCause = %08x", diag1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) exception_exit(prev_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) * SDBBP EJTAG debug exception handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) * We skip the instruction and return to the next instruction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) void ejtag_exception_handler(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) const int field = 2 * sizeof(unsigned long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) unsigned long depc, old_epc, old_ra;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) unsigned int debug;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) depc = read_c0_depc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) debug = read_c0_debug();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) if (debug & 0x80000000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) * In branch delay slot.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) * We cheat a little bit here and use EPC to calculate the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) * debug return address (DEPC). EPC is restored after the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) * calculation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) old_epc = regs->cp0_epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) old_ra = regs->regs[31];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) regs->cp0_epc = depc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) compute_return_epc(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) depc = regs->cp0_epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) regs->cp0_epc = old_epc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) regs->regs[31] = old_ra;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) depc += 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) write_c0_depc(depc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) #if 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) write_c0_debug(debug | 0x100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) * NMI exception handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) * No lock; only written during early bootup by CPU 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) static RAW_NOTIFIER_HEAD(nmi_chain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) int register_nmi_notifier(struct notifier_block *nb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) return raw_notifier_chain_register(&nmi_chain, nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) void __noreturn nmi_exception_handler(struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) char str[100];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) nmi_enter();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) raw_notifier_call_chain(&nmi_chain, 0, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) bust_spinlocks(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) smp_processor_id(), regs->cp0_epc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) regs->cp0_epc = read_c0_errorepc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) die(str, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) nmi_exit();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) #define VECTORSPACING 0x100 /* for EI/VI mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) unsigned long ebase;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) EXPORT_SYMBOL_GPL(ebase);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) unsigned long exception_handlers[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) unsigned long vi_handlers[64];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) void __init *set_except_vector(int n, void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) unsigned long handler = (unsigned long) addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) unsigned long old_handler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) #ifdef CONFIG_CPU_MICROMIPS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) * Only the TLB handlers are cache aligned with an even
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) * address. All other handlers are on an odd address and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) * require no modification. Otherwise, MIPS32 mode will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) * be entered when handling any TLB exceptions. That
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) * would be bad...since we must stay in microMIPS mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) if (!(handler & 0x1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) handler |= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) old_handler = xchg(&exception_handlers[n], handler);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) if (n == 0 && cpu_has_divec) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) #ifdef CONFIG_CPU_MICROMIPS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) unsigned long jump_mask = ~((1 << 27) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) unsigned long jump_mask = ~((1 << 28) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) u32 *buf = (u32 *)(ebase + 0x200);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) unsigned int k0 = 26;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) uasm_i_j(&buf, handler & ~jump_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) uasm_i_nop(&buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) UASM_i_LA(&buf, k0, handler);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) uasm_i_jr(&buf, k0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) uasm_i_nop(&buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) return (void *)old_handler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) static void do_default_vi(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) show_regs(get_irq_regs());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) panic("Caught unexpected vectored interrupt.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) unsigned long handler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) unsigned long old_handler = vi_handlers[n];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) int srssets = current_cpu_data.srsets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) u16 *h;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) unsigned char *b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) BUG_ON(!cpu_has_veic && !cpu_has_vint);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) if (addr == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) handler = (unsigned long) do_default_vi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) srs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) handler = (unsigned long) addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) vi_handlers[n] = handler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) if (srs >= srssets)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) panic("Shadow register set %d not supported", srs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) if (cpu_has_veic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) if (board_bind_eic_interrupt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) board_bind_eic_interrupt(n, srs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) } else if (cpu_has_vint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) /* SRSMap is only defined if shadow sets are implemented */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) if (srssets > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) change_c0_srsmap(0xf << n*4, srs << n*4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) if (srs == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) * If no shadow set is selected then use the default handler
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) * that does normal register saving and standard interrupt exit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) extern char except_vec_vi, except_vec_vi_lui;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) extern char except_vec_vi_ori, except_vec_vi_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) extern char rollback_except_vec_vi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) char *vec_start = using_rollback_handler() ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) &rollback_except_vec_vi : &except_vec_vi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) const int lui_offset = &except_vec_vi_lui - vec_start + 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) const int ori_offset = &except_vec_vi_ori - vec_start + 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) const int lui_offset = &except_vec_vi_lui - vec_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) const int ori_offset = &except_vec_vi_ori - vec_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) const int handler_len = &except_vec_vi_end - vec_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) if (handler_len > VECTORSPACING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) * Sigh... panicing won't help as the console
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) * is probably not configured :(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) panic("VECTORSPACING too small");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) set_handler(((unsigned long)b - ebase), vec_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) #ifdef CONFIG_CPU_MICROMIPS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) (handler_len - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) handler_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) h = (u16 *)(b + lui_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) *h = (handler >> 16) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) h = (u16 *)(b + ori_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) *h = (handler & 0xffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) local_flush_icache_range((unsigned long)b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) (unsigned long)(b+handler_len));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) * In other cases jump directly to the interrupt handler. It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) * is the handler's responsibility to save registers if required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) * (eg hi/lo) and return from the exception using "eret".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) u32 insn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) h = (u16 *)b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) /* j handler */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) #ifdef CONFIG_CPU_MICROMIPS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) h[0] = (insn >> 16) & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) h[1] = insn & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) h[2] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) h[3] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) local_flush_icache_range((unsigned long)b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) (unsigned long)(b+8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) return (void *)old_handler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) void *set_vi_handler(int n, vi_handler_t addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) return set_vi_srs_handler(n, addr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) extern void tlb_init(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) * Timer interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) int cp0_compare_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) EXPORT_SYMBOL_GPL(cp0_compare_irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) int cp0_compare_irq_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) * Performance counter IRQ or -1 if shared with timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) int cp0_perfcount_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) * Fast debug channel IRQ or -1 if not present
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) int cp0_fdc_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) EXPORT_SYMBOL_GPL(cp0_fdc_irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) static int noulri;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) static int __init ulri_disable(char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) pr_info("Disabling ulri\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) noulri = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) __setup("noulri", ulri_disable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) /* configure STATUS register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) static void configure_status(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) * Disable coprocessors and select 32-bit or 64-bit addressing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) * and the 16/32 or 32/32 FPR register model. Reset the BEV
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) * flag that some firmware may have left set and the TS bit (for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) * IP27). Set XX for ISA IV code to work.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) unsigned int status_set = ST0_KERNEL_CUMASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) #ifdef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) status_set |= ST0_XX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) if (cpu_has_dsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) status_set |= ST0_MX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) status_set);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) unsigned int hwrena;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) EXPORT_SYMBOL_GPL(hwrena);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) /* configure HWRENA register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) static void configure_hwrena(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) hwrena = cpu_hwrena_impl_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) if (cpu_has_mips_r2_r6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) hwrena |= MIPS_HWRENA_CPUNUM |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) MIPS_HWRENA_SYNCISTEP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) MIPS_HWRENA_CC |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) MIPS_HWRENA_CCRES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) if (!noulri && cpu_has_userlocal)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) hwrena |= MIPS_HWRENA_ULR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) if (hwrena)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) write_c0_hwrena(hwrena);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) static void configure_exception_vector(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) if (cpu_has_mips_r2_r6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) unsigned long sr = set_c0_status(ST0_BEV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) /* If available, use WG to set top bits of EBASE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) if (cpu_has_ebase_wg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) #ifdef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) write_c0_ebase_64(ebase | MIPS_EBASE_WG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) write_c0_ebase(ebase | MIPS_EBASE_WG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) write_c0_ebase(ebase);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) write_c0_status(sr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) if (cpu_has_veic || cpu_has_vint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) /* Setting vector spacing enables EI/VI mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) change_c0_intctl(0x3e0, VECTORSPACING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) if (cpu_has_divec) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) if (cpu_has_mipsmt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) unsigned int vpflags = dvpe();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) set_c0_cause(CAUSEF_IV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) evpe(vpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) set_c0_cause(CAUSEF_IV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) void per_cpu_trap_init(bool is_boot_cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) configure_status();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) configure_hwrena();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) configure_exception_vector();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) * o read IntCtl.IPTI to determine the timer interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) * o read IntCtl.IPPCI to determine the performance counter interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) * o read IntCtl.IPFDC to determine the fast debug channel interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) if (cpu_has_mips_r2_r6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) if (!cp0_fdc_irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) cp0_fdc_irq = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) cp0_perfcount_irq = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) cp0_fdc_irq = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) if (cpu_has_mmid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) cpu_data[cpu].asid_cache = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) else if (!cpu_data[cpu].asid_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) cpu_data[cpu].asid_cache = asid_first_version(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) mmgrab(&init_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) current->active_mm = &init_mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) BUG_ON(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) enter_lazy_tlb(&init_mm, current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) /* Boot CPU's cache setup in setup_arch(). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) if (!is_boot_cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) cpu_cache_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) tlb_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) TLBMISS_HANDLER_SETUP();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) /* Install CPU exception handler */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) void set_handler(unsigned long offset, void *addr, unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) #ifdef CONFIG_CPU_MICROMIPS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) memcpy((void *)(ebase + offset), addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) local_flush_icache_range(ebase + offset, ebase + offset + size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) static const char panic_null_cerr[] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) "Trying to set NULL cache error exception handler\n";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) * Install uncached CPU exception handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) * This is suitable only for the cache error exception which is the only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) * exception handler that is being run uncached.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) void set_uncached_handler(unsigned long offset, void *addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) unsigned long uncached_ebase = CKSEG1ADDR(ebase);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) panic(panic_null_cerr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) memcpy((void *)(uncached_ebase + offset), addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) static int __initdata rdhwr_noopt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) static int __init set_rdhwr_noopt(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) rdhwr_noopt = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) __setup("rdhwr_noopt", set_rdhwr_noopt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) void __init trap_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) extern char except_vec3_generic;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) extern char except_vec4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) extern char except_vec3_r4000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) unsigned long i, vec_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) phys_addr_t ebase_pa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) check_wait();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) if (!cpu_has_mips_r2_r6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) ebase = CAC_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) ebase_pa = virt_to_phys((void *)ebase);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) vec_size = 0x400;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) memblock_reserve(ebase_pa, vec_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) if (cpu_has_veic || cpu_has_vint)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) vec_size = 0x200 + VECTORSPACING*64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) vec_size = PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) if (!ebase_pa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) panic("%s: Failed to allocate %lu bytes align=0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) __func__, vec_size, 1 << fls(vec_size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) * Try to ensure ebase resides in KSeg0 if possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) * It shouldn't generally be in XKPhys on MIPS64 to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) * hitting a poorly defined exception base for Cache Errors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) * The allocation is likely to be in the low 512MB of physical,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) * in which case we should be able to convert to KSeg0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) * EVA is special though as it allows segments to be rearranged
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) * and to become uncached during cache error handling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) ebase = CKSEG0ADDR(ebase_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) ebase = (unsigned long)phys_to_virt(ebase_pa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) if (cpu_has_mmips) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) unsigned int config3 = read_c0_config3();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) if (board_ebase_setup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) board_ebase_setup();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) per_cpu_trap_init(true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) memblock_set_bottom_up(false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) * Copy the generic exception handlers to their final destination.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) * This will be overridden later as suitable for a particular
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) * configuration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) set_handler(0x180, &except_vec3_generic, 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) * Setup default vectors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) for (i = 0; i <= 31; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) set_except_vector(i, handle_reserved);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) * Copy the EJTAG debug exception vector handler code to it's final
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) * destination.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) if (cpu_has_ejtag && board_ejtag_handler_setup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) board_ejtag_handler_setup();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) * Only some CPUs have the watch exceptions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) if (cpu_has_watch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) set_except_vector(EXCCODE_WATCH, handle_watch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) * Initialise interrupt handlers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) if (cpu_has_veic || cpu_has_vint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) int nvec = cpu_has_veic ? 64 : 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) for (i = 0; i < nvec; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) set_vi_handler(i, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) else if (cpu_has_divec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) set_handler(0x200, &except_vec4, 0x8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) * Some CPUs can enable/disable for cache parity detection, but does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) * it different ways.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) parity_protection_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) * The Data Bus Errors / Instruction Bus Errors are signaled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) * by external hardware. Therefore these two exceptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) * may have board specific handlers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) if (board_be_init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) board_be_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) set_except_vector(EXCCODE_INT, using_rollback_handler() ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) rollback_handle_int : handle_int);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) set_except_vector(EXCCODE_MOD, handle_tlbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) set_except_vector(EXCCODE_TLBL, handle_tlbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) set_except_vector(EXCCODE_TLBS, handle_tlbs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) set_except_vector(EXCCODE_ADEL, handle_adel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) set_except_vector(EXCCODE_ADES, handle_ades);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) set_except_vector(EXCCODE_IBE, handle_ibe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) set_except_vector(EXCCODE_DBE, handle_dbe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) set_except_vector(EXCCODE_SYS, handle_sys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) set_except_vector(EXCCODE_BP, handle_bp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) if (rdhwr_noopt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) set_except_vector(EXCCODE_RI, handle_ri);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) if (cpu_has_vtag_icache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) else if (current_cpu_type() == CPU_LOONGSON64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) set_except_vector(EXCCODE_CPU, handle_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) set_except_vector(EXCCODE_OV, handle_ov);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) set_except_vector(EXCCODE_TR, handle_tr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) if (board_nmi_handler_setup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) board_nmi_handler_setup();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) if (cpu_has_fpu && !cpu_has_nofpuex)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) set_except_vector(EXCCODE_FPE, handle_fpe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) if (cpu_has_ftlbparex)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) if (cpu_has_gsexcex)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) if (cpu_has_rixiex) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) set_except_vector(EXCCODE_MSADIS, handle_msa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) set_except_vector(EXCCODE_MDMX, handle_mdmx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) if (cpu_has_mcheck)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) set_except_vector(EXCCODE_MCHECK, handle_mcheck);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) if (cpu_has_mipsmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) set_except_vector(EXCCODE_THREAD, handle_mt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) set_except_vector(EXCCODE_DSPDIS, handle_dsp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) if (board_cache_error_setup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) board_cache_error_setup();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) if (cpu_has_vce)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) /* Special exception: R4[04]00 uses also the divec space. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) set_handler(0x180, &except_vec3_r4000, 0x100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) else if (cpu_has_4kex)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) set_handler(0x180, &except_vec3_generic, 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) set_handler(0x080, &except_vec3_generic, 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) local_flush_icache_range(ebase, ebase + vec_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) sort_extable(__start___dbe_table, __stop___dbe_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) switch (cmd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) case CPU_PM_ENTER_FAILED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) case CPU_PM_EXIT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) configure_status();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) configure_hwrena();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) configure_exception_vector();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) /* Restore register with CPU number for TLB handlers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) TLBMISS_HANDLER_RESTORE();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) static struct notifier_block trap_pm_notifier_block = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) .notifier_call = trap_pm_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) static int __init trap_pm_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) return cpu_pm_register_notifier(&trap_pm_notifier_block);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) arch_initcall(trap_pm_init);