Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright 2001 MontaVista Software Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (c) 2003, 2004  Maciej W. Rozycki
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Common time service routines for MIPS machines.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/bug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/clockchips.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/param.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/timex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <asm/cpu-features.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <asm/cpu-type.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <asm/div64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <asm/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #ifdef CONFIG_CPU_FREQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) static DEFINE_PER_CPU(unsigned long, pcp_lpj_ref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) static DEFINE_PER_CPU(unsigned long, pcp_lpj_ref_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) static unsigned long glb_lpj_ref;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) static unsigned long glb_lpj_ref_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) static int cpufreq_callback(struct notifier_block *nb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 			    unsigned long val, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	struct cpufreq_freqs *freq = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	struct cpumask *cpus = freq->policy->cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	unsigned long lpj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	 * Skip lpj numbers adjustment if the CPU-freq transition is safe for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	 * the loops delay. (Is this possible?)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	if (freq->flags & CPUFREQ_CONST_LOOPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 		return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	/* Save the initial values of the lpjes for future scaling. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	if (!glb_lpj_ref) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 		glb_lpj_ref = boot_cpu_data.udelay_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 		glb_lpj_ref_freq = freq->old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 		for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 			per_cpu(pcp_lpj_ref, cpu) =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 				cpu_data[cpu].udelay_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 			per_cpu(pcp_lpj_ref_freq, cpu) = freq->old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	 * Adjust global lpj variable and per-CPU udelay_val number in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	 * accordance with the new CPU frequency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 		loops_per_jiffy = cpufreq_scale(glb_lpj_ref,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 						glb_lpj_ref_freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 						freq->new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 		for_each_cpu(cpu, cpus) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 			lpj = cpufreq_scale(per_cpu(pcp_lpj_ref, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 					    per_cpu(pcp_lpj_ref_freq, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 					    freq->new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 			cpu_data[cpu].udelay_val = (unsigned int)lpj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) static struct notifier_block cpufreq_notifier = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	.notifier_call  = cpufreq_callback,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) static int __init register_cpufreq_notifier(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	return cpufreq_register_notifier(&cpufreq_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 					 CPUFREQ_TRANSITION_NOTIFIER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) core_initcall(register_cpufreq_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) #endif /* CONFIG_CPU_FREQ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  * forward reference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) DEFINE_SPINLOCK(rtc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) EXPORT_SYMBOL(rtc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) static int null_perf_irq(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) int (*perf_irq)(void) = null_perf_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) EXPORT_SYMBOL(perf_irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  * time_init() - it does the following things.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)  * 1) plat_time_init() -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)  *	a) (optional) set up RTC routines,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)  *	b) (optional) calibrate and set the mips_hpt_frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)  *	    (only needed if you intended to use cpu counter as timer interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)  *	     source)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)  * 2) calculate a couple of cached variables for later usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) unsigned int mips_hpt_frequency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) EXPORT_SYMBOL_GPL(mips_hpt_frequency);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) static __init int cpu_has_mfc0_count_bug(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	switch (current_cpu_type()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	case CPU_R4000PC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	case CPU_R4000SC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	case CPU_R4000MC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		 * V3.0 is documented as suffering from the mfc0 from count bug.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		 * Afaik this is the last version of the R4000.	 Later versions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		 * were marketed as R4400.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	case CPU_R4400PC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	case CPU_R4400SC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	case CPU_R4400MC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 		 * The published errata for the R4400 up to 3.0 say the CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		 * has the mfc0 from count bug.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		if ((current_cpu_data.processor_id & 0xff) <= 0x30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		 * we assume newer revisions are ok
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) void __init time_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	plat_time_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	 * The use of the R4k timer as a clock event takes precedence;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	 * if reading the Count register might interfere with the timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	 * interrupt, then we don't use the timer as a clock source.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	 * We may still use the timer as a clock source though if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	 * timer interrupt isn't reliable; the interference doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	 * matter then, because we don't use the interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	if (mips_clockevent_init() != 0 || !cpu_has_mfc0_count_bug())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		init_mips_clocksource();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) }