^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) 2013 Imagination Technologies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Author: Paul Burton <paul.burton@mips.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/sched/task_stack.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/sched/hotplug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <asm/bcache.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <asm/mips-cps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <asm/mips_mt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <asm/mipsregs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <asm/pm-cps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <asm/r4kcache.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <asm/smp-cps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <asm/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <asm/uasm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) static bool threads_disabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) static DECLARE_BITMAP(core_power, NR_CPUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) struct core_boot_config *mips_cps_core_bootcfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) static int __init setup_nothreads(char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) threads_disabled = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) early_param("nothreads", setup_nothreads);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) static unsigned core_vpe_count(unsigned int cluster, unsigned core)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) if (threads_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) return mips_cps_numvps(cluster, core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) static void __init cps_smp_setup(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) unsigned int nclusters, ncores, nvpes, core_vpes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) unsigned long core_entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) int cl, c, v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) /* Detect & record VPE topology */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) nvpes = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) nclusters = mips_cps_numclusters();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) for (cl = 0; cl < nclusters; cl++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) if (cl > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) pr_cont(",");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) pr_cont("{");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) ncores = mips_cps_numcores(cl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) for (c = 0; c < ncores; c++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) core_vpes = core_vpe_count(cl, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) if (c > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) pr_cont(",");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) pr_cont("%u", core_vpes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) if (!cl && !c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) smp_num_siblings = core_vpes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) cpu_set_cluster(&cpu_data[nvpes + v], cl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) cpu_set_core(&cpu_data[nvpes + v], c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) cpu_set_vpe_id(&cpu_data[nvpes + v], v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) nvpes += core_vpes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) pr_cont("}");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) pr_cont(" total %u\n", nvpes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) /* Indicate present CPUs (CPU being synonymous with VPE) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) __cpu_number_map[v] = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) __cpu_logical_map[v] = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) /* Set a coherent default CCA (CWB) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) change_c0_config(CONF_CM_CMASK, 0x5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) /* Core 0 is powered up (we're running on it) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) bitmap_set(core_power, 0, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) /* Initialise core 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) mips_cps_core_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) /* Make core 0 coherent with everything */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) write_gcr_cl_coherence(0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) if (mips_cm_revision() >= CM_REV_CM3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) write_gcr_bev_base(core_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #ifdef CONFIG_MIPS_MT_FPAFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) /* If we have an FPU, enroll ourselves in the FPU-full mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) if (cpu_has_fpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) cpumask_set_cpu(0, &mt_fpu_cpumask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #endif /* CONFIG_MIPS_MT_FPAFF */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) static void __init cps_prepare_cpus(unsigned int max_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) unsigned ncores, core_vpes, c, cca;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) bool cca_unsuitable, cores_limited;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) u32 *entry_code;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) mips_mt_set_cpuoptions();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) /* Detect whether the CCA is unsuited to multi-core SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) cca = read_c0_config() & CONF_CM_CMASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) switch (cca) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) case 0x4: /* CWBE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) case 0x5: /* CWB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) /* The CCA is coherent, multi-core is fine */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) cca_unsuitable = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) /* CCA is not coherent, multi-core is not usable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) cca_unsuitable = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) /* Warn the user if the CCA prevents multi-core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) cores_limited = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) if (cca_unsuitable || cpu_has_dc_aliases) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) for_each_present_cpu(c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) if (cpus_are_siblings(smp_processor_id(), c))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) set_cpu_present(c, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) cores_limited = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) if (cores_limited)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) pr_warn("Using only one core due to %s%s%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) cca_unsuitable ? "unsuitable CCA" : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) cpu_has_dc_aliases ? "dcache aliasing" : "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) * Patch the start of mips_cps_core_entry to provide:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) * s0 = kseg0 CCA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) entry_code = (u32 *)&mips_cps_core_entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) uasm_i_addiu(&entry_code, 16, 0, cca);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) blast_dcache_range((unsigned long)&mips_cps_core_entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) (unsigned long)entry_code);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) bc_wback_inv((unsigned long)&mips_cps_core_entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) (void *)entry_code - (void *)&mips_cps_core_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) __sync();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /* Allocate core boot configuration structs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) ncores = mips_cps_numcores(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) if (!mips_cps_core_bootcfg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) pr_err("Failed to allocate boot config for %u cores\n", ncores);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) goto err_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) /* Allocate VPE boot configuration structs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) for (c = 0; c < ncores; c++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) core_vpes = core_vpe_count(0, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) sizeof(*mips_cps_core_bootcfg[c].vpe_config),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) if (!mips_cps_core_bootcfg[c].vpe_config) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) pr_err("Failed to allocate %u VPE boot configs\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) core_vpes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) goto err_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /* Mark this CPU as booted */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) atomic_set(&mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)].vpe_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 1 << cpu_vpe_id(¤t_cpu_data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) err_out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) /* Clean up allocations */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) if (mips_cps_core_bootcfg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) for (c = 0; c < ncores; c++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) kfree(mips_cps_core_bootcfg[c].vpe_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) kfree(mips_cps_core_bootcfg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) mips_cps_core_bootcfg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) /* Effectively disable SMP by declaring CPUs not present */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) for_each_possible_cpu(c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) if (c == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) set_cpu_present(c, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) static void boot_core(unsigned int core, unsigned int vpe_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) u32 stat, seq_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) unsigned timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) /* Select the appropriate core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) /* Set its reset vector */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) /* Ensure its coherency is disabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) write_gcr_co_coherence(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) /* Start it with the legacy memory map and exception base */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) /* Ensure the core can access the GCRs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) set_gcr_access(1 << core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) if (mips_cpc_present()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) /* Reset the core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) mips_cpc_lock_other(core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) if (mips_cm_revision() >= CM_REV_CM3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) /* Run only the requested VP following the reset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) write_cpc_co_vp_stop(0xf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) write_cpc_co_vp_run(1 << vpe_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) * Ensure that the VP_RUN register is written before the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) * core leaves reset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) write_cpc_co_cmd(CPC_Cx_CMD_RESET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) timeout = 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) while (true) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) stat = read_cpc_co_stat_conf();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) /* U6 == coherent execution, ie. the core is up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) /* Delay a little while before we start warning */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) if (timeout) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) timeout--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) mdelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) core, stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) mdelay(1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) mips_cpc_unlock_other();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) /* Take the core out of reset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) write_gcr_co_reset_release(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) mips_cm_unlock_other();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) /* The core is now powered up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) bitmap_set(core_power, core, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) static void remote_vpe_boot(void *dummy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) unsigned core = cpu_core(¤t_cpu_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) mips_cps_boot_vpes(core_cfg, cpu_vpe_id(¤t_cpu_data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) static int cps_boot_secondary(int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) unsigned core = cpu_core(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) unsigned long core_entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) unsigned int remote;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) /* We don't yet support booting CPUs in other clusters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) return -ENOSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) vpe_cfg->pc = (unsigned long)&smp_bootstrap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) vpe_cfg->sp = __KSTK_TOS(idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) vpe_cfg->gp = (unsigned long)task_thread_info(idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) if (!test_bit(core, core_power)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) /* Boot a VPE on a powered down core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) boot_core(core, vpe_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) if (cpu_has_vp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) write_gcr_co_reset_base(core_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) mips_cm_unlock_other();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) if (!cpus_are_siblings(cpu, smp_processor_id())) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) /* Boot a VPE on another powered up core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) for (remote = 0; remote < NR_CPUS; remote++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) if (!cpus_are_siblings(cpu, remote))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) if (cpu_online(remote))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) if (remote >= NR_CPUS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) pr_crit("No online CPU in core %u to start CPU%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) core, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) err = smp_call_function_single(remote, remote_vpe_boot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) NULL, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) panic("Failed to call remote CPU\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) /* Boot a VPE on this core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) mips_cps_boot_vpes(core_cfg, vpe_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) static void cps_init_secondary(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) /* Disable MT - we only want to run 1 TC per VPE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) if (cpu_has_mipsmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) dmt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) if (mips_cm_revision() >= CM_REV_CM3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) unsigned int ident = read_gic_vl_ident();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) * Ensure that our calculation of the VP ID matches up with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) * what the GIC reports, otherwise we'll have configured
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) * interrupts incorrectly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) if (cpu_has_veic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) clear_c0_status(ST0_IM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) STATUSF_IP4 | STATUSF_IP5 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) STATUSF_IP6 | STATUSF_IP7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) static void cps_smp_finish(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) #ifdef CONFIG_MIPS_MT_FPAFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) /* If we have an FPU, enroll ourselves in the FPU-full mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) if (cpu_has_fpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) #endif /* CONFIG_MIPS_MT_FPAFF */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) enum cpu_death {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) CPU_DEATH_HALT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) CPU_DEATH_POWER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) static void cps_shutdown_this_cpu(enum cpu_death death)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) unsigned int cpu, core, vpe_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) core = cpu_core(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) if (death == CPU_DEATH_HALT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) vpe_id = cpu_vpe_id(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) pr_debug("Halting core %d VP%d\n", core, vpe_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) if (cpu_has_mipsmt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) /* Halt this TC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) write_c0_tchalt(TCHALT_H);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) instruction_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) } else if (cpu_has_vp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) write_cpc_cl_vp_stop(1 << vpe_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) /* Ensure that the VP_STOP register is written */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) pr_debug("Gating power to core %d\n", core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) /* Power down the core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) cps_pm_enter_state(CPS_PM_POWER_GATED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) #ifdef CONFIG_KEXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) static void cps_kexec_nonboot_cpu(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) if (cpu_has_mipsmt || cpu_has_vp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) cps_shutdown_this_cpu(CPU_DEATH_HALT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) cps_shutdown_this_cpu(CPU_DEATH_POWER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) #endif /* CONFIG_KEXEC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) static int cps_cpu_disable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) unsigned cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) struct core_boot_config *core_cfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) if (!cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) if (!cps_pm_support_state(CPS_PM_POWER_GATED))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) core_cfg = &mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) smp_mb__after_atomic();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) set_cpu_online(cpu, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) calculate_cpu_foreign_map();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) static unsigned cpu_death_sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) static enum cpu_death cpu_death;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) void play_dead(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) idle_task_exit();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) cpu_death = CPU_DEATH_POWER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) pr_debug("CPU%d going offline\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) if (cpu_has_mipsmt || cpu_has_vp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) /* Look for another online VPE within the core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) for_each_online_cpu(cpu_death_sibling) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) if (!cpus_are_siblings(cpu, cpu_death_sibling))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) * There is an online VPE within the core. Just halt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) * this TC and leave the core alone.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) cpu_death = CPU_DEATH_HALT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) /* This CPU has chosen its way out */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) (void)cpu_report_death();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) cps_shutdown_this_cpu(cpu_death);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) /* This should never be reached */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) panic("Failed to offline CPU %u", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) static void wait_for_sibling_halt(void *ptr_cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) unsigned cpu = (unsigned long)ptr_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) unsigned halted;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) settc(vpe_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) halted = read_tc_c0_tchalt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) } while (!(halted & TCHALT_H));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) static void cps_cpu_die(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) unsigned core = cpu_core(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) ktime_t fail_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) unsigned stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) /* Wait for the cpu to choose its way out */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) if (!cpu_wait_death(cpu, 5)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) pr_err("CPU%u: didn't offline\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) * Now wait for the CPU to actually offline. Without doing this that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) * offlining may race with one or more of:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) * - Onlining the CPU again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) * - Powering down the core if another VPE within it is offlined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) * - A sibling VPE entering a non-coherent state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) * with which we could race, so do nothing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) if (cpu_death == CPU_DEATH_POWER) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) * Wait for the core to enter a powered down or clock gated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) * state, the latter happening when a JTAG probe is connected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) * in which case the CPC will refuse to power down the core.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) fail_time = ktime_add_ms(ktime_get(), 2000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) mips_cpc_lock_other(core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) stat = read_cpc_co_stat_conf();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) stat &= CPC_Cx_STAT_CONF_SEQSTATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) mips_cpc_unlock_other();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) mips_cm_unlock_other();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) * The core ought to have powered down, but didn't &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) * now we don't really know what state it's in. It's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) * likely that its _pwr_up pin has been wired to logic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) * 1 & it powered back up as soon as we powered it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) * down...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) * The best we can do is warn the user & continue in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) * the hope that the core is doing nothing harmful &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) * might behave properly if we online it later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) if (WARN(ktime_after(ktime_get(), fail_time),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) "CPU%u hasn't powered down, seq. state %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) cpu, stat))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) } while (1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) /* Indicate the core is powered off */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) bitmap_clear(core_power, core, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) } else if (cpu_has_mipsmt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) * Have a CPU with access to the offlined CPUs registers wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) * for its TC to halt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) err = smp_call_function_single(cpu_death_sibling,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) wait_for_sibling_halt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) (void *)(unsigned long)cpu, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) panic("Failed to call remote sibling CPU\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) } else if (cpu_has_vp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) stat = read_cpc_co_vp_running();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) mips_cm_unlock_other();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) } while (stat & (1 << vpe_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) #endif /* CONFIG_HOTPLUG_CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) static const struct plat_smp_ops cps_smp_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) .smp_setup = cps_smp_setup,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) .prepare_cpus = cps_prepare_cpus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) .boot_secondary = cps_boot_secondary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) .init_secondary = cps_init_secondary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) .smp_finish = cps_smp_finish,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) .send_ipi_single = mips_smp_send_ipi_single,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) .send_ipi_mask = mips_smp_send_ipi_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) .cpu_disable = cps_cpu_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) .cpu_die = cps_cpu_die,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) #ifdef CONFIG_KEXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) .kexec_nonboot_cpu = cps_kexec_nonboot_cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) bool mips_cps_smp_in_use(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) extern const struct plat_smp_ops *mp_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) return mp_ops == &cps_smp_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) int register_cps_smp_ops(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) if (!mips_cm_present()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) /* check we have a GIC - we need one for IPIs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) register_smp_ops(&cps_smp_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) }