Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (C) 2014 Imagination Technologies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Author: Paul Burton <paul.burton@mips.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include <linux/cpuhotplug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/percpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/suspend.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <asm/asm-offsets.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <asm/cacheops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <asm/idle.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <asm/mips-cps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <asm/mipsmtregs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <asm/pm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <asm/pm-cps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <asm/smp-cps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <asm/uasm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * cps_nc_entry_fn - type of a generated non-coherent state entry function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * @online: the count of online coupled VPEs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * The code entering & exiting non-coherent states is generated at runtime
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * using uasm, in order to ensure that the compiler cannot insert a stray
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * memory access at an unfortunate time and to allow the generation of optimal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * core-specific code particularly for cache routines. If coupled_coherence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * returns the number of VPEs that were in the wait state at the point this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * the entry function for CPS_PM_NC_WAIT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * The entry point of the generated non-coherent idle state entry/exit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * functions. Actually per-core rather than per-CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 				  nc_asm_enter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) /* Bitmap indicating which states are supported by the system */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * Indicates the number of coupled VPEs ready to operate in a non-coherent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * state. Actually per-core rather than per-CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) /* Indicates online CPUs coupled with the current CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  * Used to synchronize entry to deep idle states. Actually per-core rather
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  * than per-CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) /* Saved CPU state across the CPS_PM_POWER_GATED state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) /* A somewhat arbitrary number of labels & relocs for uasm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) static struct uasm_label labels[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) static struct uasm_reloc relocs[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) enum mips_reg {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	zero, at, v0, v1, a0, a1, a2, a3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	t0, t1, t2, t3, t4, t5, t6, t7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	s0, s1, s2, s3, s4, s5, s6, s7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	t8, t9, k0, k1, gp, sp, fp, ra,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) bool cps_pm_support_state(enum cps_pm_state state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	return test_bit(state, state_support);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) static void coupled_barrier(atomic_t *a, unsigned online)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	 * This function is effectively the same as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	 * there's no cpuidle device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	if (!coupled_coherence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	smp_mb__before_atomic();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	atomic_inc(a);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	while (atomic_read(a) < online)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 		cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	if (atomic_inc_return(a) == online * 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		atomic_set(a, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	while (atomic_read(a) > online)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) int cps_pm_enter_state(enum cps_pm_state state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	unsigned cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	unsigned core = cpu_core(&current_cpu_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	unsigned online, left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	u32 *core_ready_count, *nc_core_ready_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	void *nc_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	cps_nc_entry_fn entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	struct core_boot_config *core_cfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	struct vpe_boot_config *vpe_cfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	/* Check that there is an entry function for this state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	entry = per_cpu(nc_asm_enter, core)[state];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	if (!entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	/* Calculate which coupled CPUs (VPEs) are online */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	if (cpu_online(cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		cpumask_and(coupled_mask, cpu_online_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 			    &cpu_sibling_map[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		online = cpumask_weight(coupled_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		cpumask_clear_cpu(cpu, coupled_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		cpumask_clear(coupled_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		online = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	/* Setup the VPE to run mips_cps_pm_restore when started again */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 		/* Power gating relies upon CPS SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		if (!mips_cps_smp_in_use())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		core_cfg = &mips_cps_core_bootcfg[core];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		vpe_cfg->gp = (unsigned long)current_thread_info();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		vpe_cfg->sp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	/* Indicate that this CPU might not be coherent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	smp_mb__after_atomic();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	/* Create a non-coherent mapping of the core ready_count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	core_ready_count = per_cpu(ready_count, core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 				   (unsigned long)core_ready_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	nc_core_ready_count = nc_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	/* Ensure ready_count is zero-initialised before the assembly runs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	WRITE_ONCE(*nc_core_ready_count, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	coupled_barrier(&per_cpu(pm_barrier, core), online);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	/* Run the generated entry code */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	left = entry(online, nc_core_ready_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	/* Remove the non-coherent mapping of ready_count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	kunmap_noncoherent();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	/* Indicate that this CPU is definitely coherent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	 * If this VPE is the first to leave the non-coherent wait state then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	 * it needs to wake up any coupled VPEs still running their wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	 * instruction so that they return to cpuidle, which can then complete
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	 * coordination between the coupled VPEs & provide the governor with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	 * a chance to reflect on the length of time the VPEs were in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 * idle state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		arch_send_call_function_ipi_mask(coupled_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 				  struct uasm_reloc **pr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 				  const struct cache_desc *cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 				  unsigned op, int lbl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	unsigned cache_size = cache->ways << cache->waybit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	const unsigned unroll_lines = 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	/* If the cache isn't present this function has it easy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	/* Load base address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	UASM_i_LA(pp, t0, (long)CKSEG0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	/* Calculate end address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	if (cache_size < 0x8000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		uasm_i_addiu(pp, t1, t0, cache_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	/* Start of cache op loop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	uasm_build_label(pl, *pp, lbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	/* Generate the cache ops */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	for (i = 0; i < unroll_lines; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 		if (cpu_has_mips_r6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 			uasm_i_cache(pp, op, 0, t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 			uasm_i_addiu(pp, t0, t0, cache->linesz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 			uasm_i_cache(pp, op, i * cache->linesz, t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	if (!cpu_has_mips_r6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		/* Update the base address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	/* Loop if we haven't reached the end address yet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	uasm_il_bne(pp, pr, t0, t1, lbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	uasm_i_nop(pp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 			     struct uasm_reloc **pr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 			     const struct cpuinfo_mips *cpu_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 			     int lbl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	unsigned i, fsb_size = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	unsigned num_loads = (fsb_size * 3) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	unsigned line_stride = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	unsigned line_size = cpu_info->dcache.linesz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	unsigned perf_counter, perf_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	 * Determine whether this CPU requires an FSB flush, and if so which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	 * performance counter/event reflect stalls due to a full FSB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	switch (__get_cpu_type(cpu_info->cputype)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	case CPU_INTERAPTIV:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		perf_counter = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		perf_event = 51;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	case CPU_PROAPTIV:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 		/* Newer proAptiv cores don't require this workaround */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 		/* On older ones it's unavailable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 		/* Assume that the CPU does not need this workaround */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	 * Ensure that the fill/store buffer (FSB) is not holding the results
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	 * of a prefetch, since if it is then the CPC sequencer may become
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	/* Preserve perf counter setup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	/* Setup perf counter to count FSB full pipeline stalls */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	uasm_i_ehb(pp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	uasm_i_ehb(pp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	/* Base address for loads */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	UASM_i_LA(pp, t0, (long)CKSEG0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	/* Start of clear loop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	uasm_build_label(pl, *pp, lbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	/* Perform some loads to fill the FSB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	for (i = 0; i < num_loads; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	 * Invalidate the new D-cache entries so that the cache will need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	 * refilling (via the FSB) if the loop is executed again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	for (i = 0; i < num_loads; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 		uasm_i_cache(pp, Hit_Invalidate_D,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 			     i * line_size * line_stride, t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 			     i * line_size * line_stride, t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	/* Barrier ensuring previous cache invalidates are complete */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	uasm_i_sync(pp, __SYNC_full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	uasm_i_ehb(pp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	/* Check whether the pipeline stalled due to the FSB being full */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	/* Loop if it didn't */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	uasm_il_beqz(pp, pr, t1, lbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	uasm_i_nop(pp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	/* Restore perf counter 1. The count may well now be wrong... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	uasm_i_ehb(pp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	uasm_i_ehb(pp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 				struct uasm_reloc **pr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 				unsigned r_addr, int lbl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	uasm_build_label(pl, *pp, lbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	uasm_i_ll(pp, t1, 0, r_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	uasm_i_or(pp, t1, t1, t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	uasm_i_sc(pp, t1, 0, r_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	uasm_il_beqz(pp, pr, t1, lbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	uasm_i_nop(pp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	struct uasm_label *l = labels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	struct uasm_reloc *r = relocs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	u32 *buf, *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	const unsigned r_online = a0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	const unsigned r_nc_count = a1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	const unsigned r_pcohctl = t7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	const unsigned max_instrs = 256;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	unsigned cpc_cmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 		lbl_incready = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 		lbl_poll_cont,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 		lbl_secondary_hang,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 		lbl_disable_coherence,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 		lbl_flush_fsb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		lbl_invicache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 		lbl_flushdcache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 		lbl_hang,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 		lbl_set_cont,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 		lbl_secondary_cont,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		lbl_decready,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	/* Allocate a buffer to hold the generated code */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	if (!buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	/* Clear labels & relocs ready for (re)use */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	memset(labels, 0, sizeof(labels));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	memset(relocs, 0, sizeof(relocs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 		/* Power gating relies upon CPS SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		if (!mips_cps_smp_in_use())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 			goto out_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 		 * Save CPU state. Note the non-standard calling convention
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 		 * with the return address placed in v0 to avoid clobbering
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 		 * the ra register before it is saved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 		uasm_i_jalr(&p, v0, t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 		uasm_i_nop(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	 * Load addresses of required CM & CPC registers. This is done early
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	 * because they're needed in both the enable & disable coherence steps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	 * but in the coupled case the enable step will only run on one VPE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	if (coupled_coherence) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 		/* Increment ready_count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		uasm_i_sync(&p, __SYNC_mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 		uasm_build_label(&l, p, lbl_incready);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 		uasm_i_ll(&p, t1, 0, r_nc_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 		uasm_i_addiu(&p, t2, t1, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 		uasm_i_sc(&p, t2, 0, r_nc_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		uasm_il_beqz(&p, &r, t2, lbl_incready);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 		uasm_i_addiu(&p, t1, t1, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 		uasm_i_sync(&p, __SYNC_mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 		 * If this is the last VPE to become ready for non-coherence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 		 * then it should branch below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 		uasm_i_nop(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 		if (state < CPS_PM_POWER_GATED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 			 * Otherwise this is not the last VPE to become ready
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 			 * for non-coherence. It needs to wait until coherence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 			 * has been disabled before proceeding, which it will do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 			 * by polling for the top bit of ready_count being set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 			uasm_i_addiu(&p, t1, zero, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 			uasm_build_label(&l, p, lbl_poll_cont);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 			uasm_i_lw(&p, t0, 0, r_nc_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 			uasm_i_ehb(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 			if (cpu_has_mipsmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 				uasm_i_yield(&p, zero, t1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 			uasm_il_b(&p, &r, lbl_poll_cont);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 			uasm_i_nop(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 			 * The core will lose power & this VPE will not continue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 			 * so it can simply halt here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 			if (cpu_has_mipsmt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 				/* Halt the VPE via C0 tchalt register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 				uasm_i_addiu(&p, t0, zero, TCHALT_H);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 				uasm_i_mtc0(&p, t0, 2, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 			} else if (cpu_has_vp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 				/* Halt the VP via the CPC VP_STOP register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 				unsigned int vpe_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 				uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 				UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 				uasm_i_sw(&p, t0, 0, t1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 				BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 			uasm_build_label(&l, p, lbl_secondary_hang);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 			uasm_il_b(&p, &r, lbl_secondary_hang);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 			uasm_i_nop(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	 * This is the point of no return - this VPE will now proceed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	 * disable coherence. At this point we *must* be sure that no other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	 * VPE within the core will interfere with the L1 dcache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	uasm_build_label(&l, p, lbl_disable_coherence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	/* Invalidate the L1 icache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 			      Index_Invalidate_I, lbl_invicache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	/* Writeback & invalidate the L1 dcache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 			      Index_Writeback_Inv_D, lbl_flushdcache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	/* Barrier ensuring previous cache invalidates are complete */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	uasm_i_sync(&p, __SYNC_full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	uasm_i_ehb(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	if (mips_cm_revision() < CM_REV_CM3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 		* Disable all but self interventions. The load from COHCTL is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 		* defined by the interAptiv & proAptiv SUMs as ensuring that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 		*  operation resulting from the preceding store is complete.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 		*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 		uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 		uasm_i_sw(&p, t0, 0, r_pcohctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 		uasm_i_lw(&p, t0, 0, r_pcohctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 		/* Barrier to ensure write to coherence control is complete */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 		uasm_i_sync(&p, __SYNC_full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 		uasm_i_ehb(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	/* Disable coherence */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	uasm_i_sw(&p, zero, 0, r_pcohctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	uasm_i_lw(&p, t0, 0, r_pcohctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	if (state >= CPS_PM_CLOCK_GATED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 					lbl_flush_fsb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 			goto out_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 		/* Determine the CPC command to issue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 		switch (state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 		case CPS_PM_CLOCK_GATED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		case CPS_PM_POWER_GATED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 			BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 			goto out_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 		/* Issue the CPC command */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 		uasm_i_sw(&p, t1, 0, t0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 		if (state == CPS_PM_POWER_GATED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 			/* If anything goes wrong just hang */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 			uasm_build_label(&l, p, lbl_hang);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 			uasm_il_b(&p, &r, lbl_hang);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 			uasm_i_nop(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 			 * There's no point generating more code, the core is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 			 * powered down & if powered back up will run from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 			 * reset vector not from here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 			goto gen_done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 		/* Barrier to ensure write to CPC command is complete */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 		uasm_i_sync(&p, __SYNC_full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 		uasm_i_ehb(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	if (state == CPS_PM_NC_WAIT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 		 * At this point it is safe for all VPEs to proceed with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 		 * execution. This VPE will set the top bit of ready_count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 		 * to indicate to the other VPEs that they may continue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 		if (coupled_coherence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 					    lbl_set_cont);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 		 * VPEs which did not disable coherence will continue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 		 * executing, after coherence has been disabled, from this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 		 * point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 		uasm_build_label(&l, p, lbl_secondary_cont);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 		/* Now perform our wait */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 		uasm_i_wait(&p, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	 * will run this. The first will actually re-enable coherence & the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	 * rest will just be performing a rather unusual nop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 				? CM_GCR_Cx_COHERENCE_COHDOMAINEN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 				: CM3_GCR_Cx_COHERENCE_COHEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	uasm_i_sw(&p, t0, 0, r_pcohctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	uasm_i_lw(&p, t0, 0, r_pcohctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	/* Barrier to ensure write to coherence control is complete */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	uasm_i_sync(&p, __SYNC_full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	uasm_i_ehb(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 		/* Decrement ready_count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 		uasm_build_label(&l, p, lbl_decready);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 		uasm_i_sync(&p, __SYNC_mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 		uasm_i_ll(&p, t1, 0, r_nc_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 		uasm_i_addiu(&p, t2, t1, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 		uasm_i_sc(&p, t2, 0, r_nc_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 		uasm_il_beqz(&p, &r, t2, lbl_decready);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 		uasm_i_sync(&p, __SYNC_mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 		 * At this point it is safe for all VPEs to proceed with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 		 * execution. This VPE will set the top bit of ready_count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 		 * to indicate to the other VPEs that they may continue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 		 * This core will be reliant upon another core sending a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 		 * power-up command to the CPC in order to resume operation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 		 * Thus an arbitrary VPE can't trigger the core leaving the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 		 * idle state and the one that disables coherence might as well
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 		 * be the one to re-enable it. The rest will continue from here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 		 * after that has been done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 		uasm_build_label(&l, p, lbl_secondary_cont);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 		uasm_i_sync(&p, __SYNC_mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	/* The core is coherent, time to return to C code */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	uasm_i_jr(&p, ra);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	uasm_i_nop(&p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) gen_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	/* Ensure the code didn't exceed the resources allocated for it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 	BUG_ON((p - buf) > max_instrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	/* Patch branch offsets */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 	uasm_resolve_relocs(relocs, labels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	/* Flush the icache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 	return buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) out_err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 	kfree(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) static int cps_pm_online_cpu(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 	enum cps_pm_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 	unsigned core = cpu_core(&cpu_data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 	void *entry_fn, *core_rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 		if (per_cpu(nc_asm_enter, core)[state])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 		if (!test_bit(state, state_support))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 		entry_fn = cps_gen_entry_code(cpu, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 		if (!entry_fn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 			pr_err("Failed to generate core %u state %u entry\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 			       core, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 			clear_bit(state, state_support);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	if (!per_cpu(ready_count, core)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 		if (!core_rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 			pr_err("Failed allocate core %u ready_count\n", core);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 		per_cpu(ready_count, core) = core_rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) static int cps_pm_power_notifier(struct notifier_block *this,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 				 unsigned long event, void *ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	unsigned int stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	case PM_SUSPEND_PREPARE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 		stat = read_cpc_cl_stat_conf();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 		 * If we're attempting to suspend the system and power down all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 		 * of the cores, the JTAG detect bit indicates that the CPC will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 		 * instead put the cores into clock-off state. In this state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 		 * a connected debugger can cause the CPU to attempt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 		 * interactions with the powered down system. At best this will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 		 * fail. At worst, it can hang the NoC, requiring a hard reset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 		 * To avoid this, just block system suspend if a JTAG probe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 		 * is detected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 		if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 			pr_warn("JTAG probe is connected - abort suspend\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 			return NOTIFY_BAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) static int __init cps_pm_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 	/* A CM is required for all non-coherent states */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 	if (!mips_cm_present()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	 * If interrupts were enabled whilst running a wait instruction on a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 	 * non-coherent core then the VPE may end up processing interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	 * whilst non-coherent. That would be bad.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	if (cpu_wait == r4k_wait_irqoff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 		set_bit(CPS_PM_NC_WAIT, state_support);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 		pr_warn("pm-cps: non-coherent wait unavailable\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	/* Detect whether a CPC is present */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 	if (mips_cpc_present()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 		/* Detect whether clock gating is implemented */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 			set_bit(CPS_PM_CLOCK_GATED, state_support);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 			pr_warn("pm-cps: CPC does not support clock gating\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 		/* Power gating is available with CPS SMP & any CPC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 		if (mips_cps_smp_in_use())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 			set_bit(CPS_PM_POWER_GATED, state_support);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	pm_notifier(cps_pm_power_notifier, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 				 cps_pm_online_cpu, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) arch_initcall(cps_pm_init);