^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * This file is subject to the terms and conditions of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * License. See the file "COPYING" in the main directory of this archive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (C) 2007 MIPS Technologies, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/clockchips.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/percpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <asm/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <asm/cevt-r4k.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) static int mips_next_event(unsigned long delta,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) struct clock_event_device *evt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) unsigned int cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) int res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) cnt = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) cnt += delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) write_c0_compare(cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * Running under virtualisation can introduce overhead into mips_next_event() in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * potentially with an unnatural frequency, which makes a fixed min_delta_ns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) * value inappropriate as it may be too small.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * It can also introduce occasional latency from the guest being descheduled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * This function calculates a good minimum delta based roughly on the 75th
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * percentile of the time taken to do the mips_next_event() sequence, in order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * to handle potentially higher overhead while also eliminating outliers due to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * unpredictable hypervisor latency (which can be handled by retries).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * Return: An appropriate minimum delta for the clock event device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) static unsigned int calculate_min_delta(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) unsigned int cnt, i, j, k, l;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) unsigned int buf1[4], buf2[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) unsigned int min_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) * Calculate the median of 5 75th percentiles of 5 samples of how long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) * it takes to set CP0_Compare = CP0_Count + delta.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) for (i = 0; i < 5; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) for (j = 0; j < 5; ++j) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * This is like the code in mips_next_event(), and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * directly measures the borderline "safe" delta.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) cnt = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) write_c0_compare(cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) cnt = read_c0_count() - cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) /* Sorted insert into buf1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) for (k = 0; k < j; ++k) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) if (cnt < buf1[k]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) l = min_t(unsigned int,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) j, ARRAY_SIZE(buf1) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) for (; l > k; --l)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) buf1[l] = buf1[l - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) if (k < ARRAY_SIZE(buf1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) buf1[k] = cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) /* Sorted insert of 75th percentile into buf2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) l = min_t(unsigned int,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) i, ARRAY_SIZE(buf2) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) for (; l > k; --l)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) buf2[l] = buf2[l - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) if (k < ARRAY_SIZE(buf2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) /* Use 2 * median of 75th percentiles */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) /* Don't go too low */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) if (min_delta < 0x300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) min_delta = 0x300;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) return min_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) int cp0_timer_irq_installed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) * Possibly handle a performance counter interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) * Return true if the timer interrupt should not be checked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) static inline int handle_perf_irq(int r2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) * The performance counter overflow interrupt may be shared with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * timer interrupt (cp0_perfcount_irq < 0). If it is and a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) * and we can't reliably determine if a counter interrupt has also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) * happened (!r2) then don't check for a timer interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) return (cp0_perfcount_irq < 0) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) perf_irq() == IRQ_HANDLED &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) !r2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) const int r2 = cpu_has_mips_r2_r6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) struct clock_event_device *cd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) * Suckage alert:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) * Before R2 of the architecture there was no way to see if a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) * performance counter interrupt was pending, so we have to run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) * the performance counter interrupt handler anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) if (handle_perf_irq(r2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) * The same applies to performance counter interrupts. But with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) * above we now know that the reason we got here must be a timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) * interrupt. Being the paranoiacs we are we check anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) /* Clear Count/Compare Interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) write_c0_compare(read_c0_compare());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) cd = &per_cpu(mips_clockevent_device, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) cd->event_handler(cd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) struct irqaction c0_compare_irqaction = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) .handler = c0_compare_interrupt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) * IRQF_SHARED: The timer interrupt may be shared with other interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) * such as perf counter and FDC interrupts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) .flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) .name = "timer",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) void mips_event_handler(struct clock_event_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) static int c0_compare_int_pending(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) * Compare interrupt can be routed and latched outside the core,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) * so wait up to worst case number of cycle counter ticks for timer interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) * changes to propagate to the cause register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) #define COMPARE_INT_SEEN_TICKS 50
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) int c0_compare_int_usable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) unsigned int delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) unsigned int cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) #ifdef CONFIG_KVM_GUEST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * IP7 already pending? Try to clear it by acking the timer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) if (c0_compare_int_pending()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) cnt = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) write_c0_compare(cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) if (!c0_compare_int_pending())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) if (c0_compare_int_pending())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) cnt = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) cnt += delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) write_c0_compare(cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) if ((int)(read_c0_count() - cnt) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) /* increase delta if the timer was already expired */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) while ((int)(read_c0_count() - cnt) <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) ; /* Wait for expiry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) if (c0_compare_int_pending())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) if (!c0_compare_int_pending())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) cnt = read_c0_count();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) write_c0_compare(cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) back_to_back_c0_hazard();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) if (!c0_compare_int_pending())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) if (c0_compare_int_pending())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) * Feels like a real count / compare timer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) unsigned int __weak get_c0_compare_int(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) #ifdef CONFIG_CPU_FREQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) static unsigned long mips_ref_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) static int r4k_cpufreq_callback(struct notifier_block *nb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) unsigned long val, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) struct cpufreq_freqs *freq = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) struct clock_event_device *cd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) unsigned long rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) if (!mips_ref_freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) mips_ref_freq = freq->old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) if (val == CPUFREQ_POSTCHANGE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) rate = cpufreq_scale(mips_hpt_frequency, mips_ref_freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) freq->new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) for_each_cpu(cpu, freq->policy->cpus) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) cd = &per_cpu(mips_clockevent_device, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) clockevents_update_freq(cd, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) static struct notifier_block r4k_cpufreq_notifier = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) .notifier_call = r4k_cpufreq_callback,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) static int __init r4k_register_cpufreq_notifier(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) return cpufreq_register_notifier(&r4k_cpufreq_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) CPUFREQ_TRANSITION_NOTIFIER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) core_initcall(r4k_register_cpufreq_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) #endif /* !CONFIG_CPU_FREQ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) int r4k_clockevent_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) unsigned long flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) struct clock_event_device *cd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) unsigned int irq, min_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) if (!cpu_has_counter || !mips_hpt_frequency)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) if (!c0_compare_int_usable())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) * With vectored interrupts things are getting platform specific.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) * get_c0_compare_int is a hook to allow a platform to return the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) * interrupt number of its liking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) irq = get_c0_compare_int();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) cd = &per_cpu(mips_clockevent_device, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) cd->name = "MIPS";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) cd->features = CLOCK_EVT_FEAT_ONESHOT |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) CLOCK_EVT_FEAT_C3STOP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) CLOCK_EVT_FEAT_PERCPU;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) min_delta = calculate_min_delta();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) cd->rating = 300;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) cd->irq = irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) cd->cpumask = cpumask_of(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) cd->set_next_event = mips_next_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) cd->event_handler = mips_event_handler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) if (cp0_timer_irq_installed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) cp0_timer_irq_installed = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) if (request_irq(irq, c0_compare_interrupt, flags, "timer",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) c0_compare_interrupt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) pr_err("Failed to request irq %d (timer)\n", irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)