Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * This file is subject to the terms and conditions of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * License.  See the file "COPYING" in the main directory of this archive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 2007 by Ralf Baechle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Copyright (C) 2009, 2012 Cavium, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/clocksource.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/sched/clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <asm/cpu-info.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <asm/cpu-type.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <asm/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <asm/octeon/octeon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <asm/octeon/cvmx-ipd-defs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <asm/octeon/cvmx-mio-defs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <asm/octeon/cvmx-rst-defs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <asm/octeon/cvmx-fpa-defs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) static u64 f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) static u64 rdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) static u64 sdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) static u64 octeon_udelay_factor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) static u64 octeon_ndelay_factor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) void __init octeon_setup_delays(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	 * For __ndelay we divide by 2^16, so the factor is multiplied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	 * by the same amount.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	preset_lpj = octeon_get_clock_rate() / HZ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 		union cvmx_mio_rst_boot rst_boot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 		rdiv = rst_boot.s.c_mul;	/* CPU clock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 		f = (0x8000000000000000ull / sdiv) * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	} else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 		union cvmx_rst_boot rst_boot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 		rdiv = rst_boot.s.c_mul;	/* CPU clock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 		f = (0x8000000000000000ull / sdiv) * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  * Set the current core's cvmcount counter to the value of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  * IPD_CLK_COUNT.  We do this on all cores as they are brought
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  * on-line.  This allows for a read from a local cpu register to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * access a synchronized counter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) void octeon_init_cvmcount(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	u64 clk_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	unsigned loops = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 		CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	/* Clobber loops so GCC will not unroll the following while loop. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	asm("" : "+r" (loops));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	 * Loop several times so we are executing from the cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	 * which should give more deterministic timing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	while (loops--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		u64 clk_count = cvmx_read_csr(clk_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 		if (rdiv != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 			clk_count *= rdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 			if (f != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 				asm("dmultu\t%[cnt],%[f]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 				    "mfhi\t%[cnt]"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 				    : [cnt] "+r" (clk_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 				    : [f] "r" (f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 				    : "hi", "lo");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		write_c0_cvmcount(clk_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) static u64 octeon_cvmcount_read(struct clocksource *cs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	return read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) static struct clocksource clocksource_mips = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	.name		= "OCTEON_CVMCOUNT",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	.read		= octeon_cvmcount_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	.mask		= CLOCKSOURCE_MASK(64),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) unsigned long long notrace sched_clock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	/* 64-bit arithmatic can overflow, so use 128-bit.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	u64 t1, t2, t3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	unsigned long long rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	u64 mult = clocksource_mips.mult;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	u64 shift = clocksource_mips.shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	u64 cnt = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	asm (
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		"dmultu\t%[cnt],%[mult]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		"nor\t%[t1],$0,%[shift]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		"mfhi\t%[t2]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		"mflo\t%[t3]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		"dsll\t%[t2],%[t2],1\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		"dsllv\t%[t1],%[t2],%[t1]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		"or\t%[rv],%[t1],%[rv]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		: "hi", "lo");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	return rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) void __init plat_time_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	clocksource_mips.rating = 300;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) void __udelay(unsigned long us)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	u64 cur, end, inc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	cur = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	inc = us * octeon_udelay_factor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	end = cur + inc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	while (end > cur)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		cur = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) EXPORT_SYMBOL(__udelay);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) void __ndelay(unsigned long ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	u64 cur, end, inc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	cur = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	inc = ((ns * octeon_ndelay_factor) >> 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	end = cur + inc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	while (end > cur)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		cur = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) EXPORT_SYMBOL(__ndelay);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) void __delay(unsigned long loops)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	u64 cur, end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	cur = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	end = cur + loops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	while (end > cur)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		cur = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) EXPORT_SYMBOL(__delay);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)  * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)  * We scale the wait by the clock ratio, and then wait for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)  * corresponding number of core clocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)  * @count: The number of clocks to wait.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) void octeon_io_clk_delay(unsigned long count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	u64 cur, end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	cur = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	if (rdiv != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		end = count * rdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		if (f != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 			asm("dmultu\t%[cnt],%[f]\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 				"mfhi\t%[cnt]"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 				: [cnt] "+r" (end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 				: [f] "r" (f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 				: "hi", "lo");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		end = cur + end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		end = cur + count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	while (end > cur)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 		cur = read_c0_cvmcount();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) EXPORT_SYMBOL(octeon_io_clk_delay);