Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/*
*
* BRIEF MODULE DESCRIPTION
* The Descriptor Based DMA channel manager that first appeared
* on the Au1550. I started with dma.c, but I think all that is
* left is this initial comment :-)
*
* Copyright 2004 Embedded Edge, LLC
* dan@embeddededge.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/syscore_ops.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
/*
* The Descriptor Based DMA supports up to 16 channels.
*
* There are 32 devices defined. We keep an internal structure
* of devices using these channels, along with additional
* information.
*
* We allocate the descriptors and allow access to them through various
* functions. The drivers allocate the data buffers and assign them
* to the descriptors.
*/
static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
/* I couldn't find a macro that did this... */
#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
static dbdma_global_t *dbdma_gptr =
<------><------><------>(dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
static int dbdma_initialized;
static dbdev_tab_t *dbdev_tab;
static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
<------>/* UARTS */
<------>{ AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
<------>{ AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
<------>{ AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
<------>{ AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
<------>/* EXT DMA */
<------>{ AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
<------>/* USB DEV */
<------>{ AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
<------>{ AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
<------>{ AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
<------>{ AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
<------>{ AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
<------>/* PSCs */
<------>{ AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
<------>{ AU1550_DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
<------>{ AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
<------>/* MAC 0 */
<------>{ AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
<------>/* MAC 1 */
<------>{ AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
<------>{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
};
static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
<------>{ AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
<------>{ AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
<------>{ AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
<------>{ AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
<------>{ AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
<------>{ AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
<------>{ AU1200_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
<------>{ AU1200_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
<------>{ AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
<------>{ AU1200_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
<------>{ AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
<------>{ AU1200_DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
<------>{ AU1200_DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
<------>{ AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
<------>{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
};
static dbdev_tab_t au1300_dbdev_tab[] __initdata = {
<------>{ AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x10100004, 0, 0 },
<------>{ AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x10100000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x10101004, 0, 0 },
<------>{ AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x10101000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8, 0x10102004, 0, 0 },
<------>{ AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN, 0, 8, 0x10102000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x10103004, 0, 0 },
<------>{ AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x10103000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
<------>{ AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8, 0x10601000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 8, 8, 0x10601004, 0, 0 },
<------>{ AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
<------>{ AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
<------>{ AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0001c, 0, 0 },
<------>{ AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x10a0001c, 0, 0 },
<------>{ AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0101c, 0, 0 },
<------>{ AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x10a0101c, 0, 0 },
<------>{ AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0201c, 0, 0 },
<------>{ AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 16, 0x10a0201c, 0, 0 },
<------>{ AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0301c, 0, 0 },
<------>{ AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 16, 0x10a0301c, 0, 0 },
<------>{ AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8, 0x10602000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN, 4, 8, 0x10602004, 0, 0 },
<------>{ AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE, 0, 32, 0x14001810, 0, 0 },
<------>{ AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
<------>{ AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
<------>{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
<------>{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
};
/* 32 predefined plus 32 custom */
#define DBDEV_TAB_SIZE 64
static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
static dbdev_tab_t *find_dbdev_id(u32 id)
{
<------>int i;
<------>dbdev_tab_t *p;
<------>for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
<------><------>p = &dbdev_tab[i];
<------><------>if (p->dev_id == id)
<------><------><------>return p;
<------>}
<------>return NULL;
}
void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
{
<------>return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
}
EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
{
<------>u32 ret = 0;
<------>dbdev_tab_t *p;
<------>static u16 new_id = 0x1000;
<------>p = find_dbdev_id(~0);
<------>if (NULL != p) {
<------><------>memcpy(p, dev, sizeof(dbdev_tab_t));
<------><------>p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
<------><------>ret = p->dev_id;
<------><------>new_id++;
#if 0
<------><------>printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
<------><------><------><------> p->dev_id, p->dev_flags, p->dev_physaddr);
#endif
<------>}
<------>return ret;
}
EXPORT_SYMBOL(au1xxx_ddma_add_device);
void au1xxx_ddma_del_device(u32 devid)
{
<------>dbdev_tab_t *p = find_dbdev_id(devid);
<------>if (p != NULL) {
<------><------>memset(p, 0, sizeof(dbdev_tab_t));
<------><------>p->dev_id = ~0;
<------>}
}
EXPORT_SYMBOL(au1xxx_ddma_del_device);
/* Allocate a channel and return a non-zero descriptor if successful. */
u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
void (*callback)(int, void *), void *callparam)
{
<------>unsigned long flags;
<------>u32 used, chan;
<------>u32 dcp;
<------>int i;
<------>dbdev_tab_t *stp, *dtp;
<------>chan_tab_t *ctp;
<------>au1x_dma_chan_t *cp;
<------>/*
<------> * We do the initialization on the first channel allocation.
<------> * We have to wait because of the interrupt handler initialization
<------> * which can't be done successfully during board set up.
<------> */
<------>if (!dbdma_initialized)
<------><------>return 0;
<------>stp = find_dbdev_id(srcid);
<------>if (stp == NULL)
<------><------>return 0;
<------>dtp = find_dbdev_id(destid);
<------>if (dtp == NULL)
<------><------>return 0;
<------>used = 0;
<------>/* Check to see if we can get both channels. */
<------>spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
<------>if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
<------> (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
<------><------>/* Got source */
<------><------>stp->dev_flags |= DEV_FLAGS_INUSE;
<------><------>if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
<------><------> (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
<------><------><------>/* Got destination */
<------><------><------>dtp->dev_flags |= DEV_FLAGS_INUSE;
<------><------>} else {
<------><------><------>/* Can't get dest. Release src. */
<------><------><------>stp->dev_flags &= ~DEV_FLAGS_INUSE;
<------><------><------>used++;
<------><------>}
<------>} else
<------><------>used++;
<------>spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
<------>if (used)
<------><------>return 0;
<------>/* Let's see if we can allocate a channel for it. */
<------>ctp = NULL;
<------>chan = 0;
<------>spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
<------>for (i = 0; i < NUM_DBDMA_CHANS; i++)
<------><------>if (chan_tab_ptr[i] == NULL) {
<------><------><------>/*
<------><------><------> * If kmalloc fails, it is caught below same
<------><------><------> * as a channel not available.
<------><------><------> */
<------><------><------>ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
<------><------><------>chan_tab_ptr[i] = ctp;
<------><------><------>break;
<------><------>}
<------>spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
<------>if (ctp != NULL) {
<------><------>memset(ctp, 0, sizeof(chan_tab_t));
<------><------>ctp->chan_index = chan = i;
<------><------>dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
<------><------>dcp += (0x0100 * chan);
<------><------>ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
<------><------>cp = (au1x_dma_chan_t *)dcp;
<------><------>ctp->chan_src = stp;
<------><------>ctp->chan_dest = dtp;
<------><------>ctp->chan_callback = callback;
<------><------>ctp->chan_callparam = callparam;
<------><------>/* Initialize channel configuration. */
<------><------>i = 0;
<------><------>if (stp->dev_intlevel)
<------><------><------>i |= DDMA_CFG_SED;
<------><------>if (stp->dev_intpolarity)
<------><------><------>i |= DDMA_CFG_SP;
<------><------>if (dtp->dev_intlevel)
<------><------><------>i |= DDMA_CFG_DED;
<------><------>if (dtp->dev_intpolarity)
<------><------><------>i |= DDMA_CFG_DP;
<------><------>if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
<------><------><------>(dtp->dev_flags & DEV_FLAGS_SYNC))
<------><------><------><------>i |= DDMA_CFG_SYNC;
<------><------>cp->ddma_cfg = i;
<------><------>wmb(); /* drain writebuffer */
<------><------>/*
<------><------> * Return a non-zero value that can be used to find the channel
<------><------> * information in subsequent operations.
<------><------> */
<------><------>return (u32)(&chan_tab_ptr[chan]);
<------>}
<------>/* Release devices */
<------>stp->dev_flags &= ~DEV_FLAGS_INUSE;
<------>dtp->dev_flags &= ~DEV_FLAGS_INUSE;
<------>return 0;
}
EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
/*
* Set the device width if source or destination is a FIFO.
* Should be 8, 16, or 32 bits.
*/
u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
{
<------>u32 rv;
<------>chan_tab_t *ctp;
<------>dbdev_tab_t *stp, *dtp;
<------>ctp = *((chan_tab_t **)chanid);
<------>stp = ctp->chan_src;
<------>dtp = ctp->chan_dest;
<------>rv = 0;
<------>if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
<------><------>rv = stp->dev_devwidth;
<------><------>stp->dev_devwidth = bits;
<------>}
<------>if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
<------><------>rv = dtp->dev_devwidth;
<------><------>dtp->dev_devwidth = bits;
<------>}
<------>return rv;
}
EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
/* Allocate a descriptor ring, initializing as much as possible. */
u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
{
<------>int i;
<------>u32 desc_base, srcid, destid;
<------>u32 cmd0, cmd1, src1, dest1;
<------>u32 src0, dest0;
<------>chan_tab_t *ctp;
<------>dbdev_tab_t *stp, *dtp;
<------>au1x_ddma_desc_t *dp;
<------>/*
<------> * I guess we could check this to be within the
<------> * range of the table......
<------> */
<------>ctp = *((chan_tab_t **)chanid);
<------>stp = ctp->chan_src;
<------>dtp = ctp->chan_dest;
<------>/*
<------> * The descriptors must be 32-byte aligned. There is a
<------> * possibility the allocation will give us such an address,
<------> * and if we try that first we are likely to not waste larger
<------> * slabs of memory.
<------> */
<------>desc_base = (u32)kmalloc_array(entries, sizeof(au1x_ddma_desc_t),
<------><------><------><------> GFP_KERNEL|GFP_DMA);
<------>if (desc_base == 0)
<------><------>return 0;
<------>if (desc_base & 0x1f) {
<------><------>/*
<------><------> * Lost....do it again, allocate extra, and round
<------><------> * the address base.
<------><------> */
<------><------>kfree((const void *)desc_base);
<------><------>i = entries * sizeof(au1x_ddma_desc_t);
<------><------>i += (sizeof(au1x_ddma_desc_t) - 1);
<------><------>desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
<------><------>if (desc_base == 0)
<------><------><------>return 0;
<------><------>ctp->cdb_membase = desc_base;
<------><------>desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
<------>} else
<------><------>ctp->cdb_membase = desc_base;
<------>dp = (au1x_ddma_desc_t *)desc_base;
<------>/* Keep track of the base descriptor. */
<------>ctp->chan_desc_base = dp;
<------>/* Initialize the rings with as much information as we know. */
<------>srcid = stp->dev_id;
<------>destid = dtp->dev_id;
<------>cmd0 = cmd1 = src1 = dest1 = 0;
<------>src0 = dest0 = 0;
<------>cmd0 |= DSCR_CMD0_SID(srcid);
<------>cmd0 |= DSCR_CMD0_DID(destid);
<------>cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
<------>cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
<------>/* Is it mem to mem transfer? */
<------>if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
<------> (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
<------> ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
<------> (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
<------><------>cmd0 |= DSCR_CMD0_MEM;
<------>switch (stp->dev_devwidth) {
<------>case 8:
<------><------>cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
<------><------>break;
<------>case 16:
<------><------>cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
<------><------>break;
<------>case 32:
<------>default:
<------><------>cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
<------><------>break;
<------>}
<------>switch (dtp->dev_devwidth) {
<------>case 8:
<------><------>cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
<------><------>break;
<------>case 16:
<------><------>cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
<------><------>break;
<------>case 32:
<------>default:
<------><------>cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
<------><------>break;
<------>}
<------>/*
<------> * If the device is marked as an in/out FIFO, ensure it is
<------> * set non-coherent.
<------> */
<------>if (stp->dev_flags & DEV_FLAGS_IN)
<------><------>cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
<------>if (dtp->dev_flags & DEV_FLAGS_OUT)
<------><------>cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
<------>/*
<------> * Set up source1. For now, assume no stride and increment.
<------> * A channel attribute update can change this later.
<------> */
<------>switch (stp->dev_tsize) {
<------>case 1:
<------><------>src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
<------><------>break;
<------>case 2:
<------><------>src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
<------><------>break;
<------>case 4:
<------><------>src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
<------><------>break;
<------>case 8:
<------>default:
<------><------>src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
<------><------>break;
<------>}
<------>/* If source input is FIFO, set static address. */
<------>if (stp->dev_flags & DEV_FLAGS_IN) {
<------><------>if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
<------><------><------>src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
<------><------>else
<------><------><------>src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
<------>}
<------>if (stp->dev_physaddr)
<------><------>src0 = stp->dev_physaddr;
<------>/*
<------> * Set up dest1. For now, assume no stride and increment.
<------> * A channel attribute update can change this later.
<------> */
<------>switch (dtp->dev_tsize) {
<------>case 1:
<------><------>dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
<------><------>break;
<------>case 2:
<------><------>dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
<------><------>break;
<------>case 4:
<------><------>dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
<------><------>break;
<------>case 8:
<------>default:
<------><------>dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
<------><------>break;
<------>}
<------>/* If destination output is FIFO, set static address. */
<------>if (dtp->dev_flags & DEV_FLAGS_OUT) {
<------><------>if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
<------><------><------>dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
<------><------>else
<------><------><------>dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
<------>}
<------>if (dtp->dev_physaddr)
<------><------>dest0 = dtp->dev_physaddr;
#if 0
<------><------>printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
<------><------><------><------> "source1:%x dest0:%x dest1:%x\n",
<------><------><------><------> dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
<------><------><------><------> src1, dest0, dest1);
#endif
<------>for (i = 0; i < entries; i++) {
<------><------>dp->dscr_cmd0 = cmd0;
<------><------>dp->dscr_cmd1 = cmd1;
<------><------>dp->dscr_source0 = src0;
<------><------>dp->dscr_source1 = src1;
<------><------>dp->dscr_dest0 = dest0;
<------><------>dp->dscr_dest1 = dest1;
<------><------>dp->dscr_stat = 0;
<------><------>dp->sw_context = 0;
<------><------>dp->sw_status = 0;
<------><------>dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
<------><------>dp++;
<------>}
<------>/* Make last descrptor point to the first. */
<------>dp--;
<------>dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
<------>ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
<------>return (u32)ctp->chan_desc_base;
}
EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
/*
* Put a source buffer into the DMA ring.
* This updates the source pointer and byte count. Normally used
* for memory to fifo transfers.
*/
u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
{
<------>chan_tab_t *ctp;
<------>au1x_ddma_desc_t *dp;
<------>/*
<------> * I guess we could check this to be within the
<------> * range of the table......
<------> */
<------>ctp = *(chan_tab_t **)chanid;
<------>/*
<------> * We should have multiple callers for a particular channel,
<------> * an interrupt doesn't affect this pointer nor the descriptor,
<------> * so no locking should be needed.
<------> */
<------>dp = ctp->put_ptr;
<------>/*
<------> * If the descriptor is valid, we are way ahead of the DMA
<------> * engine, so just return an error condition.
<------> */
<------>if (dp->dscr_cmd0 & DSCR_CMD0_V)
<------><------>return 0;
<------>/* Load up buffer address and byte count. */
<------>dp->dscr_source0 = buf & ~0UL;
<------>dp->dscr_cmd1 = nbytes;
<------>/* Check flags */
<------>if (flags & DDMA_FLAGS_IE)
<------><------>dp->dscr_cmd0 |= DSCR_CMD0_IE;
<------>if (flags & DDMA_FLAGS_NOIE)
<------><------>dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
<------>/*
<------> * There is an errata on the Au1200/Au1550 parts that could result
<------> * in "stale" data being DMA'ed. It has to do with the snoop logic on
<------> * the cache eviction buffer. DMA_NONCOHERENT is on by default for
<------> * these parts. If it is fixed in the future, these dma_cache_inv will
<------> * just be nothing more than empty macros. See io.h.
<------> */
<------>dma_cache_wback_inv((unsigned long)buf, nbytes);
<------>dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
<------>wmb(); /* drain writebuffer */
<------>dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
<------>ctp->chan_ptr->ddma_dbell = 0;
<------>/* Get next descriptor pointer. */
<------>ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
<------>/* Return something non-zero. */
<------>return nbytes;
}
EXPORT_SYMBOL(au1xxx_dbdma_put_source);
/* Put a destination buffer into the DMA ring.
* This updates the destination pointer and byte count. Normally used
* to place an empty buffer into the ring for fifo to memory transfers.
*/
u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
{
<------>chan_tab_t *ctp;
<------>au1x_ddma_desc_t *dp;
<------>/* I guess we could check this to be within the
<------> * range of the table......
<------> */
<------>ctp = *((chan_tab_t **)chanid);
<------>/* We should have multiple callers for a particular channel,
<------> * an interrupt doesn't affect this pointer nor the descriptor,
<------> * so no locking should be needed.
<------> */
<------>dp = ctp->put_ptr;
<------>/* If the descriptor is valid, we are way ahead of the DMA
<------> * engine, so just return an error condition.
<------> */
<------>if (dp->dscr_cmd0 & DSCR_CMD0_V)
<------><------>return 0;
<------>/* Load up buffer address and byte count */
<------>/* Check flags */
<------>if (flags & DDMA_FLAGS_IE)
<------><------>dp->dscr_cmd0 |= DSCR_CMD0_IE;
<------>if (flags & DDMA_FLAGS_NOIE)
<------><------>dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
<------>dp->dscr_dest0 = buf & ~0UL;
<------>dp->dscr_cmd1 = nbytes;
#if 0
<------>printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
<------><------><------> dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
<------><------><------> dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
#endif
<------>/*
<------> * There is an errata on the Au1200/Au1550 parts that could result in
<------> * "stale" data being DMA'ed. It has to do with the snoop logic on the
<------> * cache eviction buffer. DMA_NONCOHERENT is on by default for these
<------> * parts. If it is fixed in the future, these dma_cache_inv will just
<------> * be nothing more than empty macros. See io.h.
<------> */
<------>dma_cache_inv((unsigned long)buf, nbytes);
<------>dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
<------>wmb(); /* drain writebuffer */
<------>dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
<------>ctp->chan_ptr->ddma_dbell = 0;
<------>/* Get next descriptor pointer. */
<------>ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
<------>/* Return something non-zero. */
<------>return nbytes;
}
EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
/*
* Get a destination buffer into the DMA ring.
* Normally used to get a full buffer from the ring during fifo
* to memory transfers. This does not set the valid bit, you will
* have to put another destination buffer to keep the DMA going.
*/
u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
{
<------>chan_tab_t *ctp;
<------>au1x_ddma_desc_t *dp;
<------>u32 rv;
<------>/*
<------> * I guess we could check this to be within the
<------> * range of the table......
<------> */
<------>ctp = *((chan_tab_t **)chanid);
<------>/*
<------> * We should have multiple callers for a particular channel,
<------> * an interrupt doesn't affect this pointer nor the descriptor,
<------> * so no locking should be needed.
<------> */
<------>dp = ctp->get_ptr;
<------>/*
<------> * If the descriptor is valid, we are way ahead of the DMA
<------> * engine, so just return an error condition.
<------> */
<------>if (dp->dscr_cmd0 & DSCR_CMD0_V)
<------><------>return 0;
<------>/* Return buffer address and byte count. */
<------>*buf = (void *)(phys_to_virt(dp->dscr_dest0));
<------>*nbytes = dp->dscr_cmd1;
<------>rv = dp->dscr_stat;
<------>/* Get next descriptor pointer. */
<------>ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
<------>/* Return something non-zero. */
<------>return rv;
}
EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
void au1xxx_dbdma_stop(u32 chanid)
{
<------>chan_tab_t *ctp;
<------>au1x_dma_chan_t *cp;
<------>int halt_timeout = 0;
<------>ctp = *((chan_tab_t **)chanid);
<------>cp = ctp->chan_ptr;
<------>cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
<------>wmb(); /* drain writebuffer */
<------>while (!(cp->ddma_stat & DDMA_STAT_H)) {
<------><------>udelay(1);
<------><------>halt_timeout++;
<------><------>if (halt_timeout > 100) {
<------><------><------>printk(KERN_WARNING "warning: DMA channel won't halt\n");
<------><------><------>break;
<------><------>}
<------>}
<------>/* clear current desc valid and doorbell */
<------>cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
<------>wmb(); /* drain writebuffer */
}
EXPORT_SYMBOL(au1xxx_dbdma_stop);
/*
* Start using the current descriptor pointer. If the DBDMA encounters
* a non-valid descriptor, it will stop. In this case, we can just
* continue by adding a buffer to the list and starting again.
*/
void au1xxx_dbdma_start(u32 chanid)
{
<------>chan_tab_t *ctp;
<------>au1x_dma_chan_t *cp;
<------>ctp = *((chan_tab_t **)chanid);
<------>cp = ctp->chan_ptr;
<------>cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
<------>cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
<------>wmb(); /* drain writebuffer */
<------>cp->ddma_dbell = 0;
<------>wmb(); /* drain writebuffer */
}
EXPORT_SYMBOL(au1xxx_dbdma_start);
void au1xxx_dbdma_reset(u32 chanid)
{
<------>chan_tab_t *ctp;
<------>au1x_ddma_desc_t *dp;
<------>au1xxx_dbdma_stop(chanid);
<------>ctp = *((chan_tab_t **)chanid);
<------>ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
<------>/* Run through the descriptors and reset the valid indicator. */
<------>dp = ctp->chan_desc_base;
<------>do {
<------><------>dp->dscr_cmd0 &= ~DSCR_CMD0_V;
<------><------>/*
<------><------> * Reset our software status -- this is used to determine
<------><------> * if a descriptor is in use by upper level software. Since
<------><------> * posting can reset 'V' bit.
<------><------> */
<------><------>dp->sw_status = 0;
<------><------>dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
<------>} while (dp != ctp->chan_desc_base);
}
EXPORT_SYMBOL(au1xxx_dbdma_reset);
u32 au1xxx_get_dma_residue(u32 chanid)
{
<------>chan_tab_t *ctp;
<------>au1x_dma_chan_t *cp;
<------>u32 rv;
<------>ctp = *((chan_tab_t **)chanid);
<------>cp = ctp->chan_ptr;
<------>/* This is only valid if the channel is stopped. */
<------>rv = cp->ddma_bytecnt;
<------>wmb(); /* drain writebuffer */
<------>return rv;
}
EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
void au1xxx_dbdma_chan_free(u32 chanid)
{
<------>chan_tab_t *ctp;
<------>dbdev_tab_t *stp, *dtp;
<------>ctp = *((chan_tab_t **)chanid);
<------>stp = ctp->chan_src;
<------>dtp = ctp->chan_dest;
<------>au1xxx_dbdma_stop(chanid);
<------>kfree((void *)ctp->cdb_membase);
<------>stp->dev_flags &= ~DEV_FLAGS_INUSE;
<------>dtp->dev_flags &= ~DEV_FLAGS_INUSE;
<------>chan_tab_ptr[ctp->chan_index] = NULL;
<------>kfree(ctp);
}
EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
{
<------>u32 intstat;
<------>u32 chan_index;
<------>chan_tab_t *ctp;
<------>au1x_ddma_desc_t *dp;
<------>au1x_dma_chan_t *cp;
<------>intstat = dbdma_gptr->ddma_intstat;
<------>wmb(); /* drain writebuffer */
<------>chan_index = __ffs(intstat);
<------>ctp = chan_tab_ptr[chan_index];
<------>cp = ctp->chan_ptr;
<------>dp = ctp->cur_ptr;
<------>/* Reset interrupt. */
<------>cp->ddma_irq = 0;
<------>wmb(); /* drain writebuffer */
<------>if (ctp->chan_callback)
<------><------>ctp->chan_callback(irq, ctp->chan_callparam);
<------>ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
<------>return IRQ_RETVAL(1);
}
void au1xxx_dbdma_dump(u32 chanid)
{
<------>chan_tab_t *ctp;
<------>au1x_ddma_desc_t *dp;
<------>dbdev_tab_t *stp, *dtp;
<------>au1x_dma_chan_t *cp;
<------>u32 i = 0;
<------>ctp = *((chan_tab_t **)chanid);
<------>stp = ctp->chan_src;
<------>dtp = ctp->chan_dest;
<------>cp = ctp->chan_ptr;
<------>printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
<------><------><------> (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
<------><------><------> dtp - dbdev_tab);
<------>printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
<------><------><------> (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
<------><------><------> (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
<------>printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
<------>printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
<------><------><------> cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
<------>printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
<------><------><------> cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
<------><------><------> cp->ddma_bytecnt);
<------>/* Run through the descriptors */
<------>dp = ctp->chan_desc_base;
<------>do {
<------><------>printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
<------><------><------><------> i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
<------><------>printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
<------><------><------><------> dp->dscr_source0, dp->dscr_source1,
<------><------><------><------> dp->dscr_dest0, dp->dscr_dest1);
<------><------>printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
<------><------><------><------> dp->dscr_stat, dp->dscr_nxtptr);
<------><------>dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
<------>} while (dp != ctp->chan_desc_base);
}
/* Put a descriptor into the DMA ring.
* This updates the source/destination pointers and byte count.
*/
u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
{
<------>chan_tab_t *ctp;
<------>au1x_ddma_desc_t *dp;
<------>u32 nbytes = 0;
<------>/*
<------> * I guess we could check this to be within the
<------> * range of the table......
<------> */
<------>ctp = *((chan_tab_t **)chanid);
<------>/*
<------> * We should have multiple callers for a particular channel,
<------> * an interrupt doesn't affect this pointer nor the descriptor,
<------> * so no locking should be needed.
<------> */
<------>dp = ctp->put_ptr;
<------>/*
<------> * If the descriptor is valid, we are way ahead of the DMA
<------> * engine, so just return an error condition.
<------> */
<------>if (dp->dscr_cmd0 & DSCR_CMD0_V)
<------><------>return 0;
<------>/* Load up buffer addresses and byte count. */
<------>dp->dscr_dest0 = dscr->dscr_dest0;
<------>dp->dscr_source0 = dscr->dscr_source0;
<------>dp->dscr_dest1 = dscr->dscr_dest1;
<------>dp->dscr_source1 = dscr->dscr_source1;
<------>dp->dscr_cmd1 = dscr->dscr_cmd1;
<------>nbytes = dscr->dscr_cmd1;
<------>/* Allow the caller to specify if an interrupt is generated */
<------>dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
<------>dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
<------>ctp->chan_ptr->ddma_dbell = 0;
<------>/* Get next descriptor pointer. */
<------>ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
<------>/* Return something non-zero. */
<------>return nbytes;
}
static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
static int alchemy_dbdma_suspend(void)
{
<------>int i;
<------>void __iomem *addr;
<------>addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
<------>alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
<------>alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
<------>alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
<------>alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
<------>/* save channel configurations */
<------>addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
<------>for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
<------><------>alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
<------><------>alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
<------><------>alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
<------><------>alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
<------><------>alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
<------><------>alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
<------><------>/* halt channel */
<------><------>__raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
<------><------>wmb();
<------><------>while (!(__raw_readl(addr + 0x14) & 1))
<------><------><------>wmb();
<------><------>addr += 0x100; /* next channel base */
<------>}
<------>/* disable channel interrupts */
<------>addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
<------>__raw_writel(0, addr + 0x0c);
<------>wmb();
<------>return 0;
}
static void alchemy_dbdma_resume(void)
{
<------>int i;
<------>void __iomem *addr;
<------>addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
<------>__raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
<------>__raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
<------>__raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
<------>__raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
<------>/* restore channel configurations */
<------>addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
<------>for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
<------><------>__raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
<------><------>__raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
<------><------>__raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
<------><------>__raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
<------><------>__raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
<------><------>__raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
<------><------>wmb();
<------><------>addr += 0x100; /* next channel base */
<------>}
}
static struct syscore_ops alchemy_dbdma_syscore_ops = {
<------>.suspend = alchemy_dbdma_suspend,
<------>.resume = alchemy_dbdma_resume,
};
static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
{
<------>int ret;
<------>dbdev_tab = kcalloc(DBDEV_TAB_SIZE, sizeof(dbdev_tab_t), GFP_KERNEL);
<------>if (!dbdev_tab)
<------><------>return -ENOMEM;
<------>memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
<------>for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
<------><------>dbdev_tab[ret].dev_id = ~0;
<------>dbdma_gptr->ddma_config = 0;
<------>dbdma_gptr->ddma_throttle = 0;
<------>dbdma_gptr->ddma_inten = 0xffff;
<------>wmb(); /* drain writebuffer */
<------>ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr);
<------>if (ret)
<------><------>printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
<------>else {
<------><------>dbdma_initialized = 1;
<------><------>register_syscore_ops(&alchemy_dbdma_syscore_ops);
<------>}
<------>return ret;
}
static int __init alchemy_dbdma_init(void)
{
<------>switch (alchemy_get_cputype()) {
<------>case ALCHEMY_CPU_AU1550:
<------><------>return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
<------>case ALCHEMY_CPU_AU1200:
<------><------>return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
<------>case ALCHEMY_CPU_AU1300:
<------><------>return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab);
<------>}
<------>return 0;
}
subsys_initcall(alchemy_dbdma_init);