^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) | stan.sa 3.3 7/29/91
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) | The entry point stan computes the tangent of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) | an input argument;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) | stand does the same except for denormalized input.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) | Input: Double-extended number X in location pointed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) | by address register a0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) | Output: The value tan(X) returned in floating-point register Fp0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) | Accuracy and Monotonicity: The returned result is within 3 ulp in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) | result is subsequently rounded to double precision. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) | result is provably monotonic in double precision.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) | Speed: The program sTAN takes approximately 170 cycles for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) | input argument X such that |X| < 15Pi, which is the usual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) | situation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) | Algorithm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) | k = N mod 2, so in particular, k = 0 or 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) | 3. If k is odd, go to 5.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) | 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) | rational function U/V where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) | U = r + r*s*(P1 + s*(P2 + s*P3)), and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) | Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) | 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) | rational function U/V where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) | U = r + r*s*(P1 + s*(P2 + s*P3)), and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) | -Cot(r) = -V/U. Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) | 6. If |X| > 1, go to 8.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) | 7. (|X|<2**(-40)) Tan(X) = X. Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) | Copyright (C) Motorola, Inc. 1990
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) | All Rights Reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) | For details on the license for this file, please see the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) | file, README, in this same directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) |STAN idnt 2,1 | Motorola 040 Floating Point Software Package
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) |section 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #include "fpsp.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) BOUNDS1: .long 0x3FD78000,0x4004BC7E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) TWOBYPI: .long 0x3FE45F30,0x6DC9C883
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) TANQ4: .long 0x3EA0B759,0xF50F8688
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) TANP3: .long 0xBEF2BAA5,0xA8924F04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) |--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) |--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) |--MOST 69 BITS LONG.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) .global PITBL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) PITBL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) .long 0xC0040000,0x90836524,0x88034B96,0x20B00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) .long 0x00000000,0x00000000,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) .long 0x40040000,0x90836524,0x88034B96,0xA0B00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) .set INARG,FP_SCR4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) .set TWOTO63,L_SCR1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) .set ENDFLAG,L_SCR2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) .set N,L_SCR3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) | xref t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) |xref t_extdnrm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) .global stand
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) stand:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) |--TAN(X) = X FOR DENORMALIZED X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) bra t_extdnrm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) .global stan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) stan:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) fmovex (%a0),%fp0 | ...LOAD INPUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) movel (%a0),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) movew 4(%a0),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) andil #0x7FFFFFFF,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) bges TANOK1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) bra TANSM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) TANOK1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) blts TANMAIN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) bra REDUCEX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) TANMAIN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) |--THIS IS THE USUAL CASE, |X| <= 15 PI.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) fmovex %fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) fmuld TWOBYPI,%fp1 | ...X*2/PI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) |--HIDE THE NEXT TWO INSTRUCTIONS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) leal PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) |--FP1 IS NOW READY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) fmovel %fp1,%d0 | ...CONVERT TO INTEGER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) asll #4,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) addal %d0,%a1 | ...ADDRESS N*PIBY2 IN Y1, Y2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) fsubx (%a1)+,%fp0 | ...X-Y1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) |--HIDE THE NEXT ONE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) rorl #5,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) andil #0x80000000,%d0 | ...D0 WAS ODD IFF D0 < 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) TANCONT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) cmpil #0,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) blt NODD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) fmovex %fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) fmulx %fp1,%fp1 | ...S = R*R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) fmoved TANQ4,%fp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) fmoved TANP3,%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) fmulx %fp1,%fp3 | ...SQ4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) fmulx %fp1,%fp2 | ...SP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) faddd TANQ3,%fp3 | ...Q3+SQ4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) faddx TANP2,%fp2 | ...P2+SP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) fmulx %fp1,%fp3 | ...S(Q3+SQ4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) fmulx %fp1,%fp2 | ...S(P2+SP3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) faddx TANP1,%fp2 | ...P1+S(P2+SP3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) fmulx %fp1,%fp3 | ...S(Q2+S(Q3+SQ4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) fmulx %fp1,%fp2 | ...S(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) fmulx %fp0,%fp2 | ...RS(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) fmulx %fp3,%fp1 | ...S(Q1+S(Q2+S(Q3+SQ4)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) faddx %fp2,%fp0 | ...R+RS(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) fadds #0x3F800000,%fp1 | ...1+S(Q1+...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) fmovel %d1,%fpcr |restore users exceptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) fdivx %fp1,%fp0 |last inst - possible exception set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) bra t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) NODD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) fmovex %fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) fmulx %fp0,%fp0 | ...S = R*R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) fmoved TANQ4,%fp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) fmoved TANP3,%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) fmulx %fp0,%fp3 | ...SQ4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) fmulx %fp0,%fp2 | ...SP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) faddd TANQ3,%fp3 | ...Q3+SQ4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) faddx TANP2,%fp2 | ...P2+SP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) fmulx %fp0,%fp3 | ...S(Q3+SQ4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) fmulx %fp0,%fp2 | ...S(P2+SP3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) faddx TANP1,%fp2 | ...P1+S(P2+SP3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) fmulx %fp0,%fp3 | ...S(Q2+S(Q3+SQ4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) fmulx %fp0,%fp2 | ...S(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) fmulx %fp1,%fp2 | ...RS(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) fmulx %fp3,%fp0 | ...S(Q1+S(Q2+S(Q3+SQ4)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) faddx %fp2,%fp1 | ...R+RS(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) fadds #0x3F800000,%fp0 | ...1+S(Q1+...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) fmovex %fp1,-(%sp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) eoril #0x80000000,(%sp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) fmovel %d1,%fpcr |restore users exceptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) fdivx (%sp)+,%fp0 |last inst - possible exception set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) bra t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) TANBORS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) |--IF |X| < 2**(-40), RETURN X OR 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) cmpil #0x3FFF8000,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) bgts REDUCEX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) TANSM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) fmovex %fp0,-(%sp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) fmovel %d1,%fpcr |restore users exceptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) fmovex (%sp)+,%fp0 |last inst - possible exception set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) bra t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) REDUCEX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) movel %d2,-(%a7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) fmoves #0x00000000,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) |--there is a danger of unwanted overflow in first LOOP iteration. In this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) |--case, reduce argument by one remainder step to make subsequent reduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) |--safe.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) cmpil #0x7ffeffff,%d0 |is argument dangerously large?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) bnes LOOP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) movel #0x7ffe0000,FP_SCR2(%a6) |yes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) | ;create 2**16383*PI/2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) movel #0xc90fdaa2,FP_SCR2+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) clrl FP_SCR2+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) ftstx %fp0 |test sign of argument
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) | ;PI/2 at FP_SCR3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) movel #0x85a308d3,FP_SCR3+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) clrl FP_SCR3+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) fblt red_neg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) orw #0x8000,FP_SCR2(%a6) |positive arg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) orw #0x8000,FP_SCR3(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) red_neg:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) fmovex %fp0,%fp1 |save high result in fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) faddx FP_SCR3(%a6),%fp0 |low part of reduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) fsubx %fp0,%fp1 |determine low component of result
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) |--integer quotient will be stored in N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) LOOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) movew INARG(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) movel %d0,%a1 | ...save a copy of D0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) andil #0x00007FFF,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) subil #0x00003FFF,%d0 | ...D0 IS K
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) cmpil #28,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) bles LASTLOOP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) CONTLOOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) subil #27,%d0 | ...D0 IS L := K-27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) movel #0,ENDFLAG(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) bras WORK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) LASTLOOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) clrl %d0 | ...D0 IS L := 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) movel #1,ENDFLAG(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) WORK:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) |--2**L * (PIby2_1), 2**L * (PIby2_2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) movel #0xA2F9836E,FP_SCR1+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) movel #0x4E44152A,FP_SCR1+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) fmovex %fp0,%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) fmulx FP_SCR1(%a6),%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) |--US THE DESIRED VALUE IN FLOATING POINT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) |--HIDE SIX CYCLES OF INSTRUCTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) movel %a1,%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) swap %d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) andil #0x80000000,%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) movel %d2,TWOTO63(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) movel %d0,%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) |--FP2 IS READY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) movew %d2,FP_SCR2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) clrw FP_SCR2+2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) movel #0xC90FDAA2,FP_SCR2+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) |--FP2 IS READY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) addil #0x00003FDD,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) movew %d0,FP_SCR3(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) clrw FP_SCR3+2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) movel #0x85A308D3,FP_SCR3+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) movel ENDFLAG(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) |--P2 = 2**(L) * Piby2_2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) fmovex %fp2,%fp4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) fmovex %fp2,%fp5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) fmovex %fp4,%fp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) |--we want P+p = W+w but |p| <= half ulp of P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) |--Then, we need to compute A := R-P and a := r-p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) faddx %fp5,%fp3 | ...FP3 is P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) fsubx %fp3,%fp4 | ...W-P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) fsubx %fp3,%fp0 | ...FP0 is A := R - P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) fmovex %fp0,%fp3 | ...FP3 A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) fsubx %fp4,%fp1 | ...FP1 is a := r - p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) |--|r| <= half ulp of R.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) faddx %fp1,%fp0 | ...FP0 is R := A+a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) |--No need to calculate r if this is the last loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) cmpil #0,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) bgt RESTORE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) |--Need to calculate r
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) fsubx %fp0,%fp3 | ...A-R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) bra LOOP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) RESTORE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) fmovel %fp2,N(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) movel (%a7)+,%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) fmovemx (%a7)+,%fp2-%fp5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) movel N(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) rorl #1,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) bra TANCONT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) |end