Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) |	stan.sa 3.3 7/29/91
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) |	The entry point stan computes the tangent of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) |	an input argument;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) |	stand does the same except for denormalized input.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) |	Input: Double-extended number X in location pointed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) |		by address register a0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) |	Output: The value tan(X) returned in floating-point register Fp0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) |	Accuracy and Monotonicity: The returned result is within 3 ulp in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) |		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) |		result is subsequently rounded to double precision. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) |		result is provably monotonic in double precision.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) |	Speed: The program sTAN takes approximately 170 cycles for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) |		input argument X such that |X| < 15Pi, which is the usual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) |		situation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) |	Algorithm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) |	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) |	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) |		k = N mod 2, so in particular, k = 0 or 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) |	3. If k is odd, go to 5.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) |	4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) |		rational function U/V where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) |		U = r + r*s*(P1 + s*(P2 + s*P3)), and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) |		V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))),  s = r*r.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) |		Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) |	4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) |		rational function U/V where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) |		U = r + r*s*(P1 + s*(P2 + s*P3)), and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) |		V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) |		-Cot(r) = -V/U. Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) |	6. If |X| > 1, go to 8.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) |	7. (|X|<2**(-40)) Tan(X) = X. Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) |	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) |		Copyright (C) Motorola, Inc. 1990
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) |			All Rights Reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) |       For details on the license for this file, please see the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) |       file, README, in this same directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) |STAN	idnt	2,1 | Motorola 040 Floating Point Software Package
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	|section	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #include "fpsp.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) BOUNDS1:	.long 0x3FD78000,0x4004BC7E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) TWOBYPI:	.long 0x3FE45F30,0x6DC9C883
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) TANQ4:	.long 0x3EA0B759,0xF50F8688
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) TANP3:	.long 0xBEF2BAA5,0xA8924F04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) TANQ3:	.long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) TANP2:	.long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) TANQ2:	.long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) TANP1:	.long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) TANQ1:	.long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) TWOPI1:	.long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) TWOPI2:	.long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) |--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) |--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) |--MOST 69 BITS LONG.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	.global	PITBL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) PITBL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)   .long  0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)   .long  0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)   .long  0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)   .long  0xC0040000,0xB6365E22,0xEE46F000,0x21480000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)   .long  0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)   .long  0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)   .long  0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)   .long  0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)   .long  0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)   .long  0xC0040000,0x90836524,0x88034B96,0x20B00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)   .long  0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)   .long  0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)   .long  0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)   .long  0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)   .long  0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)   .long  0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)   .long  0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)   .long  0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)   .long  0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)   .long  0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)   .long  0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)   .long  0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)   .long  0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)   .long  0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)   .long  0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)   .long  0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)   .long  0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)   .long  0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)   .long  0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)   .long  0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)   .long  0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)   .long  0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)   .long  0x00000000,0x00000000,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)   .long  0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)   .long  0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)   .long  0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)   .long  0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)   .long  0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)   .long  0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)   .long  0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)   .long  0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)   .long  0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)   .long  0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)   .long  0x40030000,0x8A3AE64F,0x76F80584,0x21080000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)   .long  0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)   .long  0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)   .long  0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)   .long  0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)   .long  0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)   .long  0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)   .long  0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)   .long  0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)   .long  0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)   .long  0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)   .long  0x40040000,0x8A3AE64F,0x76F80584,0x21880000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)   .long  0x40040000,0x90836524,0x88034B96,0xA0B00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)   .long  0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)   .long  0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)   .long  0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)   .long  0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)   .long  0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)   .long  0x40040000,0xB6365E22,0xEE46F000,0xA1480000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)   .long  0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)   .long  0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)   .long  0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	.set	INARG,FP_SCR4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	.set	TWOTO63,L_SCR1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	.set	ENDFLAG,L_SCR2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	.set	N,L_SCR3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	| xref	t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	|xref	t_extdnrm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	.global	stand
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) stand:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) |--TAN(X) = X FOR DENORMALIZED X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	bra		t_extdnrm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	.global	stan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) stan:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	fmovex		(%a0),%fp0	| ...LOAD INPUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	movel		(%a0),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	movew		4(%a0),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	andil		#0x7FFFFFFF,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	cmpil		#0x3FD78000,%d0		| ...|X| >= 2**(-40)?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	bges		TANOK1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	bra		TANSM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) TANOK1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	cmpil		#0x4004BC7E,%d0		| ...|X| < 15 PI?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	blts		TANMAIN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	bra		REDUCEX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) TANMAIN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) |--THIS IS THE USUAL CASE, |X| <= 15 PI.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	fmovex		%fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	fmuld		TWOBYPI,%fp1	| ...X*2/PI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) |--HIDE THE NEXT TWO INSTRUCTIONS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	leal		PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) |--FP1 IS NOW READY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	fmovel		%fp1,%d0		| ...CONVERT TO INTEGER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	asll		#4,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	addal		%d0,%a1		| ...ADDRESS N*PIBY2 IN Y1, Y2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	fsubx		(%a1)+,%fp0	| ...X-Y1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) |--HIDE THE NEXT ONE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	fsubs		(%a1),%fp0	| ...FP0 IS R = (X-Y1)-Y2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	rorl		#5,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	andil		#0x80000000,%d0	| ...D0 WAS ODD IFF D0 < 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) TANCONT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	cmpil		#0,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	blt		NODD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	fmovex		%fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	fmulx		%fp1,%fp1		| ...S = R*R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	fmoved		TANQ4,%fp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	fmoved		TANP3,%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	fmulx		%fp1,%fp3		| ...SQ4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	fmulx		%fp1,%fp2		| ...SP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	faddd		TANQ3,%fp3	| ...Q3+SQ4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	faddx		TANP2,%fp2	| ...P2+SP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	fmulx		%fp1,%fp3		| ...S(Q3+SQ4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	fmulx		%fp1,%fp2		| ...S(P2+SP3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	faddx		TANQ2,%fp3	| ...Q2+S(Q3+SQ4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	faddx		TANP1,%fp2	| ...P1+S(P2+SP3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	fmulx		%fp1,%fp3		| ...S(Q2+S(Q3+SQ4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	fmulx		%fp1,%fp2		| ...S(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	faddx		TANQ1,%fp3	| ...Q1+S(Q2+S(Q3+SQ4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	fmulx		%fp0,%fp2		| ...RS(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	fmulx		%fp3,%fp1		| ...S(Q1+S(Q2+S(Q3+SQ4)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	faddx		%fp2,%fp0		| ...R+RS(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	fadds		#0x3F800000,%fp1	| ...1+S(Q1+...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	fmovel		%d1,%fpcr		|restore users exceptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	fdivx		%fp1,%fp0		|last inst - possible exception set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) NODD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	fmovex		%fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	fmulx		%fp0,%fp0		| ...S = R*R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	fmoved		TANQ4,%fp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	fmoved		TANP3,%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	fmulx		%fp0,%fp3		| ...SQ4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	fmulx		%fp0,%fp2		| ...SP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	faddd		TANQ3,%fp3	| ...Q3+SQ4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	faddx		TANP2,%fp2	| ...P2+SP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	fmulx		%fp0,%fp3		| ...S(Q3+SQ4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	fmulx		%fp0,%fp2		| ...S(P2+SP3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	faddx		TANQ2,%fp3	| ...Q2+S(Q3+SQ4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	faddx		TANP1,%fp2	| ...P1+S(P2+SP3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	fmulx		%fp0,%fp3		| ...S(Q2+S(Q3+SQ4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	fmulx		%fp0,%fp2		| ...S(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	faddx		TANQ1,%fp3	| ...Q1+S(Q2+S(Q3+SQ4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	fmulx		%fp1,%fp2		| ...RS(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	fmulx		%fp3,%fp0		| ...S(Q1+S(Q2+S(Q3+SQ4)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	faddx		%fp2,%fp1		| ...R+RS(P1+S(P2+SP3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	fadds		#0x3F800000,%fp0	| ...1+S(Q1+...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	fmovex		%fp1,-(%sp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	eoril		#0x80000000,(%sp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	fmovel		%d1,%fpcr		|restore users exceptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	fdivx		(%sp)+,%fp0	|last inst - possible exception set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) TANBORS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) |--IF |X| < 2**(-40), RETURN X OR 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	cmpil		#0x3FFF8000,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	bgts		REDUCEX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) TANSM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	fmovex		%fp0,-(%sp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	fmovel		%d1,%fpcr		 |restore users exceptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	fmovex		(%sp)+,%fp0	|last inst - possible exception set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) REDUCEX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	fmovemx	%fp2-%fp5,-(%a7)	| ...save FP2 through FP5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	movel		%d2,-(%a7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)         fmoves         #0x00000000,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) |--there is a danger of unwanted overflow in first LOOP iteration.  In this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) |--case, reduce argument by one remainder step to make subsequent reduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) |--safe.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	cmpil	#0x7ffeffff,%d0		|is argument dangerously large?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	bnes	LOOP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	movel	#0x7ffe0000,FP_SCR2(%a6)	|yes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) |					;create 2**16383*PI/2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	movel	#0xc90fdaa2,FP_SCR2+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	clrl	FP_SCR2+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	ftstx	%fp0			|test sign of argument
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	movel	#0x7fdc0000,FP_SCR3(%a6)	|create low half of 2**16383*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) |					;PI/2 at FP_SCR3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	movel	#0x85a308d3,FP_SCR3+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	clrl   FP_SCR3+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	fblt	red_neg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	orw	#0x8000,FP_SCR2(%a6)	|positive arg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	orw	#0x8000,FP_SCR3(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) red_neg:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	faddx  FP_SCR2(%a6),%fp0		|high part of reduction is exact
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	fmovex  %fp0,%fp1		|save high result in fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	faddx  FP_SCR3(%a6),%fp0		|low part of reduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	fsubx  %fp0,%fp1			|determine low component of result
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	faddx  FP_SCR3(%a6),%fp1		|fp0/fp1 are reduced argument.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) |--integer quotient will be stored in N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) LOOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	fmovex		%fp0,INARG(%a6)	| ...+-2**K * F, 1 <= F < 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	movew		INARG(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)         movel          %d0,%a1		| ...save a copy of D0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	andil		#0x00007FFF,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	subil		#0x00003FFF,%d0	| ...D0 IS K
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	cmpil		#28,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	bles		LASTLOOP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) CONTLOOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	subil		#27,%d0	 | ...D0 IS L := K-27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	movel		#0,ENDFLAG(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	bras		WORK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) LASTLOOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	clrl		%d0		| ...D0 IS L := 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	movel		#1,ENDFLAG(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) WORK:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) |--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) |--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) |--2**L * (PIby2_1), 2**L * (PIby2_2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	movel		#0x00003FFE,%d2	| ...BIASED EXPO OF 2/PI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	subl		%d0,%d2		| ...BIASED EXPO OF 2**(-L)*(2/PI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	movel		#0xA2F9836E,FP_SCR1+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	movel		#0x4E44152A,FP_SCR1+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	movew		%d2,FP_SCR1(%a6)	| ...FP_SCR1 is 2**(-L)*(2/PI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	fmovex		%fp0,%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	fmulx		FP_SCR1(%a6),%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) |--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) |--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) |--US THE DESIRED VALUE IN FLOATING POINT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) |--HIDE SIX CYCLES OF INSTRUCTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)         movel		%a1,%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384)         swap		%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	andil		#0x80000000,%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	oril		#0x5F000000,%d2	| ...D2 IS SIGN(INARG)*2**63 IN SGL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	movel		%d2,TWOTO63(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	movel		%d0,%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	addil		#0x00003FFF,%d2	| ...BIASED EXPO OF 2**L * (PI/2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) |--FP2 IS READY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	fadds		TWOTO63(%a6),%fp2	| ...THE FRACTIONAL PART OF FP1 IS ROUNDED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)         movew		%d2,FP_SCR2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	clrw           FP_SCR2+2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	movel		#0xC90FDAA2,FP_SCR2+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	clrl		FP_SCR2+8(%a6)		| ...FP_SCR2 is  2**(L) * Piby2_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) |--FP2 IS READY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	fsubs		TWOTO63(%a6),%fp2		| ...FP2 is N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	addil		#0x00003FDD,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405)         movew		%d0,FP_SCR3(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	clrw           FP_SCR3+2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	movel		#0x85A308D3,FP_SCR3+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	clrl		FP_SCR3+8(%a6)		| ...FP_SCR3 is 2**(L) * Piby2_2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	movel		ENDFLAG(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) |--P2 = 2**(L) * Piby2_2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	fmovex		%fp2,%fp4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	fmulx		FP_SCR2(%a6),%fp4		| ...W = N*P1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	fmovex		%fp2,%fp5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	fmulx		FP_SCR3(%a6),%fp5		| ...w = N*P2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	fmovex		%fp4,%fp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) |--we want P+p = W+w  but  |p| <= half ulp of P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) |--Then, we need to compute  A := R-P   and  a := r-p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	faddx		%fp5,%fp3			| ...FP3 is P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	fsubx		%fp3,%fp4			| ...W-P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	fsubx		%fp3,%fp0			| ...FP0 is A := R - P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)         faddx		%fp5,%fp4			| ...FP4 is p = (W-P)+w
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	fmovex		%fp0,%fp3			| ...FP3 A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	fsubx		%fp4,%fp1			| ...FP1 is a := r - p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) |--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) |--|r| <= half ulp of R.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	faddx		%fp1,%fp0			| ...FP0 is R := A+a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) |--No need to calculate r if this is the last loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	cmpil		#0,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	bgt		RESTORE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) |--Need to calculate r
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	fsubx		%fp0,%fp3			| ...A-R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	faddx		%fp3,%fp1			| ...FP1 is r := (A-R)+a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	bra		LOOP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) RESTORE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443)         fmovel		%fp2,N(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	movel		(%a7)+,%d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	fmovemx	(%a7)+,%fp2-%fp5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	movel		N(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449)         rorl		#1,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	bra		TANCONT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	|end