Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) |	setox.sa 3.1 12/10/90
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) |	The entry point setox computes the exponential of a value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) |	setoxd does the same except the input value is a denormalized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) |	number.	setoxm1 computes exp(X)-1, and setoxm1d computes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) |	exp(X)-1 for denormalized X.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) |	INPUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) |	-----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) |	Double-extended value in memory location pointed to by address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) |	register a0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) |	OUTPUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) |	------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) |	exp(X) or exp(X)-1 returned in floating-point register fp0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) |	ACCURACY and MONOTONICITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) |	-------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) |	The returned result is within 0.85 ulps in 64 significant bit, i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) |	within 0.5001 ulp to 53 bits if the result is subsequently rounded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) |	to double precision. The result is provably monotonic in double
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) |	precision.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) |	SPEED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) |	-----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) |	Two timings are measured, both in the copy-back mode. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) |	first one is measured when the function is invoked the first time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) |	(so the instructions and data are not in cache), and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) |	second one is measured when the function is reinvoked at the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) |	input argument.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) |	The program setox takes approximately 210/190 cycles for input
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) |	argument X whose magnitude is less than 16380 log2, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) |	is the usual situation.	For the less common arguments,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) |	depending on their values, the program may run faster or slower --
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) |	but no worse than 10% slower even in the extreme cases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) |	The program setoxm1 takes approximately ??? / ??? cycles for input
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) |	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) |	approximately ??? / ??? cycles. For the less common arguments,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) |	depending on their values, the program may run faster or slower --
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) |	but no worse than 10% slower even in the extreme cases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) |	ALGORITHM and IMPLEMENTATION NOTES
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) |	----------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) |	setoxd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) |	------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) |	Step 1.	Set ans := 1.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) |	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) |	Notes:	This will always generate one exception -- inexact.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) |	setox
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) |	-----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) |	Step 1.	Filter out extreme cases of input argument.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) |		1.1	If |X| >= 2^(-65), go to Step 1.3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) |		1.2	Go to Step 7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) |		1.3	If |X| < 16380 log(2), go to Step 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) |		1.4	Go to Step 8.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) |	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) |		 To avoid the use of floating-point comparisons, a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) |		 compact representation of |X| is used. This format is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) |		 32-bit integer, the upper (more significant) 16 bits are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) |		 the sign and biased exponent field of |X|; the lower 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) |		 bits are the 16 most significant fraction (including the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) |		 explicit bit) bits of |X|. Consequently, the comparisons
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) |		 in Steps 1.1 and 1.3 can be performed by integer comparison.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) |		 Note also that the constant 16380 log(2) used in Step 1.3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) |		 is also in the compact form. Thus taking the branch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) |		 to Step 2 guarantees |X| < 16380 log(2). There is no harm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) |		 to have a small number of cases where |X| is less than,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) |		 but close to, 16380 log(2) and the branch to Step 9 is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) |		 taken.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) |	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) |		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) |		2.2	N := round-to-nearest-integer( X * 64/log2 ).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) |		2.3	Calculate	J = N mod 64; so J = 0,1,2,..., or 63.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) |		2.4	Calculate	M = (N - J)/64; so N = 64M + J.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) |		2.5	Calculate the address of the stored value of 2^(J/64).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) |		2.6	Create the value Scale = 2^M.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) |	Notes:	The calculation in 2.2 is really performed by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) |			Z := X * constant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) |			N := round-to-nearest-integer(Z)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) |		 where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) |			constant := single-precision( 64/log 2 ).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) |		 Using a single-precision constant avoids memory access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) |		 Another effect of using a single-precision "constant" is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) |		 that the calculated value Z is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) |			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) |		 This error has to be considered later in Steps 3 and 4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) |	Step 3.	Calculate X - N*log2/64.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) |		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) |		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) |	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) |		 the value	-log2/64	to 88 bits of accuracy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) |		 b) N*L1 is exact because N is no longer than 22 bits and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) |		 L1 is no longer than 24 bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) |		 c) The calculation X+N*L1 is also exact due to cancellation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) |		 Thus, R is practically X+N(L1+L2) to full 64 bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) |		 d) It is important to estimate how large can |R| be after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) |		 Step 3.2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) |			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) |			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) |			X*64/log2 - N	=	f - eps*X 64/log2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) |			X - N*log2/64	=	f*log2/64 - eps*X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) |		 Now |X| <= 16446 log2, thus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) |			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) |					<= 0.57 log2/64.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) |		 This bound will be used in Step 4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) |	Step 4.	Approximate exp(R)-1 by a polynomial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) |			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) |	Notes:	a) In order to reduce memory access, the coefficients are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) |		 made as "short" as possible: A1 (which is 1/2), A4 and A5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) |		 are single precision; A2 and A3 are double precision.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) |		 b) Even with the restrictions above,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) |			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) |		 Note that 0.0062 is slightly bigger than 0.57 log2/64.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) |		 c) To fully utilize the pipeline, p is separated into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) |		 two independent pieces of roughly equal complexities
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) |			p = [ R + R*S*(A2 + S*A4) ]	+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) |				[ S*(A1 + S*(A3 + S*A5)) ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) |		 where S = R*R.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) |	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) |				ans := T + ( T*p + t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) |		 where T and t are the stored values for 2^(J/64).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) |	Notes:	2^(J/64) is stored as T and t where T+t approximates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) |		 2^(J/64) to roughly 85 bits; T is in extended precision
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) |		 and t is in single precision. Note also that T is rounded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) |		 to 62 bits so that the last two bits of T are zero. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) |		 reason for such a special form is that T-1, T-2, and T-8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) |		 will all be exact --- a property that will give much
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) |		 more accurate computation of the function EXPM1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) |	Step 6.	Reconstruction of exp(X)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) |			exp(X) = 2^M * 2^(J/64) * exp(R).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) |		6.1	If AdjFlag = 0, go to 6.3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) |		6.2	ans := ans * AdjScale
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) |		6.3	Restore the user FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) |		6.4	Return ans := ans * Scale. Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) |	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) |		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) |		 neither overflow nor underflow. If AdjFlag = 1, that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) |		 means that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) |			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) |		 Hence, exp(X) may overflow or underflow or neither.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) |		 When that is the case, AdjScale = 2^(M1) where M1 is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) |		 approximately M. Thus 6.2 will never cause over/underflow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) |		 Possible exception in 6.4 is overflow or underflow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) |		 The inexact exception is not generated in 6.4. Although
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) |		 one can argue that the inexact flag should always be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) |		 raised, to simulate that exception cost to much than the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) |		 flag is worth in practical uses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) |	Step 7.	Return 1 + X.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) |		7.1	ans := X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) |		7.2	Restore user FPCR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) |		7.3	Return ans := 1 + ans. Exit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) |	Notes:	For non-zero X, the inexact exception will always be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) |		 raised by 7.3. That is the only exception raised by 7.3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) |		 Note also that we use the FMOVEM instruction to move X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) |		 in Step 7.1 to avoid unnecessary trapping. (Although
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) |		 the FMOVEM may not seem relevant since X is normalized,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) |		 the precaution will be useful in the library version of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) |		 this code where the separate entry for denormalized inputs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) |		 will be done away with.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) |	Step 8.	Handle exp(X) where |X| >= 16380log2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) |		8.1	If |X| > 16480 log2, go to Step 9.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) |		(mimic 2.2 - 2.6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) |		8.2	N := round-to-integer( X * 64/log2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) |		8.3	Calculate J = N mod 64, J = 0,1,...,63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) |		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) |		8.5	Calculate the address of the stored value 2^(J/64).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) |		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) |		8.7	Go to Step 3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) |	Notes:	Refer to notes for 2.2 - 2.6.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) |	Step 9.	Handle exp(X), |X| > 16480 log2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) |		9.1	If X < 0, go to 9.3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) |		9.2	ans := Huge, go to 9.4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) |		9.3	ans := Tiny.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) |		9.4	Restore user FPCR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) |		9.5	Return ans := ans * ans. Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) |	Notes:	Exp(X) will surely overflow or underflow, depending on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) |		 X's sign. "Huge" and "Tiny" are respectively large/tiny
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) |		 extended-precision numbers whose square over/underflow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) |		 with an inexact result. Thus, 9.5 always raises the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) |		 inexact together with either overflow or underflow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) |	setoxm1d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) |	--------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) |	Step 1.	Set ans := 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) |	Step 2.	Return	ans := X + ans. Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) |	Notes:	This will return X with the appropriate rounding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) |		 precision prescribed by the user FPCR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) |	setoxm1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) |	-------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) |	Step 1.	Check |X|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) |		1.1	If |X| >= 1/4, go to Step 1.3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) |		1.2	Go to Step 7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) |		1.3	If |X| < 70 log(2), go to Step 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) |		1.4	Go to Step 10.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) |	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) |		 However, it is conceivable |X| can be small very often
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) |		 because EXPM1 is intended to evaluate exp(X)-1 accurately
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) |		 when |X| is small. For further details on the comparisons,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) |		 see the notes on Step 1 of setox.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) |	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) |		2.1	N := round-to-nearest-integer( X * 64/log2 ).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) |		2.2	Calculate	J = N mod 64; so J = 0,1,2,..., or 63.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) |		2.3	Calculate	M = (N - J)/64; so N = 64M + J.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) |		2.4	Calculate the address of the stored value of 2^(J/64).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) |		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) |	Notes:	See the notes on Step 2 of setox.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) |	Step 3.	Calculate X - N*log2/64.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) |		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) |		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) |	Notes:	Applying the analysis of Step 3 of setox in this case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) |		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) |		 this case).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) |	Step 4.	Approximate exp(R)-1 by a polynomial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) |			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) |	Notes:	a) In order to reduce memory access, the coefficients are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) |		 made as "short" as possible: A1 (which is 1/2), A5 and A6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) |		 are single precision; A2, A3 and A4 are double precision.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) |		 b) Even with the restriction above,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) |			|p - (exp(R)-1)| <	|R| * 2^(-72.7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) |		 for all |R| <= 0.0055.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) |		 c) To fully utilize the pipeline, p is separated into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) |		 two independent pieces of roughly equal complexity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) |			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) |				[ R + S*(A1 + S*(A3 + S*A5)) ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) |		 where S = R*R.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) |	Step 5.	Compute 2^(J/64)*p by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) |				p := T*p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) |		 where T and t are the stored values for 2^(J/64).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) |	Notes:	2^(J/64) is stored as T and t where T+t approximates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) |		 2^(J/64) to roughly 85 bits; T is in extended precision
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) |		 and t is in single precision. Note also that T is rounded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) |		 to 62 bits so that the last two bits of T are zero. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) |		 reason for such a special form is that T-1, T-2, and T-8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) |		 will all be exact --- a property that will be exploited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) |		 in Step 6 below. The total relative error in p is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) |		 bigger than 2^(-67.7) compared to the final result.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) |	Step 6.	Reconstruction of exp(X)-1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) |			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) |		6.1	If M <= 63, go to Step 6.3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) |		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) |		6.3	If M >= -3, go to 6.5.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) |		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) |		6.5	ans := (T + OnebySc) + (p + t).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) |		6.6	Restore user FPCR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) |		6.7	Return ans := Sc * ans. Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) |	Notes:	The various arrangements of the expressions give accurate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) |		 evaluations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) |	Step 7.	exp(X)-1 for |X| < 1/4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) |		7.1	If |X| >= 2^(-65), go to Step 9.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) |		7.2	Go to Step 8.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) |	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) |		8.1	If |X| < 2^(-16312), goto 8.3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) |		8.2	Restore FPCR; return ans := X - 2^(-16382). Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) |		8.3	X := X * 2^(140).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) |		8.4	Restore FPCR; ans := ans - 2^(-16382).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) |		 Return ans := ans*2^(140). Exit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) |	Notes:	The idea is to return "X - tiny" under the user
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) |		 precision and rounding modes. To avoid unnecessary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) |		 inefficiency, we stay away from denormalized numbers the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) |		 best we can. For |X| >= 2^(-16312), the straightforward
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) |		 8.2 generates the inexact exception as the case warrants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) |	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) |			p = X + X*X*(B1 + X*(B2 + ... + X*B12))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) |	Notes:	a) In order to reduce memory access, the coefficients are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) |		 made as "short" as possible: B1 (which is 1/2), B9 to B12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) |		 are single precision; B3 to B8 are double precision; and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) |		 B2 is double extended.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) |		 b) Even with the restriction above,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) |			|p - (exp(X)-1)| < |X| 2^(-70.6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) |		 for all |X| <= 0.251.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) |		 Note that 0.251 is slightly bigger than 1/4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) |		 c) To fully preserve accuracy, the polynomial is computed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) |		 as	X + ( S*B1 +	Q ) where S = X*X and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) |			Q	=	X*S*(B2 + X*(B3 + ... + X*B12))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) |		 d) To fully utilize the pipeline, Q is separated into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) |		 two independent pieces of roughly equal complexity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) |			Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) |				[ S*S*(B3 + S*(B5 + ... + S*B11)) ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) |	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) |		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) |		 purposes. Therefore, go to Step 1 of setox.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) |		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) |		 ans := -1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) |		 Restore user FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) |		 Return ans := ans + 2^(-126). Exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) |	Notes:	10.2 will always create an inexact and return -1 + tiny
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) |		 in the user rounding precision and mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) |		Copyright (C) Motorola, Inc. 1990
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) |			All Rights Reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) |       For details on the license for this file, please see the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) |       file, README, in this same directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) |setox	idnt	2,1 | Motorola 040 Floating Point Software Package
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	|section	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) #include "fpsp.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) L2:	.long	0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) EXPA3:	.long	0x3FA55555,0x55554431
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) EXPA2:	.long	0x3FC55555,0x55554018
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) HUGE:	.long	0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) TINY:	.long	0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) EM1A4:	.long	0x3F811111,0x11174385
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) EM1A3:	.long	0x3FA55555,0x55554F5A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) EM1A2:	.long	0x3FC55555,0x55555555,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) EM1B8:	.long	0x3EC71DE3,0xA5774682
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) EM1B7:	.long	0x3EFA01A0,0x19D7CB68
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) EM1B6:	.long	0x3F2A01A0,0x1A019DF3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) EM1B5:	.long	0x3F56C16C,0x16C170E2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) EM1B4:	.long	0x3F811111,0x11111111
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) EM1B3:	.long	0x3FA55555,0x55555555
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) EM1B2:	.long	0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	.long	0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) TWO140:	.long	0x48B00000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) TWON140:	.long	0x37300000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) EXPTBL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	.long	0x3FFF0000,0x80000000,0x00000000,0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	.long	0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	.long	0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	.long	0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	.long	0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	.long	0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	.long	0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	.long	0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	.long	0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	.long	0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	.long	0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	.long	0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	.long	0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	.long	0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	.long	0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	.long	0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	.long	0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	.long	0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	.long	0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	.long	0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	.long	0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	.long	0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	.long	0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	.long	0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	.long	0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	.long	0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	.long	0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	.long	0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	.long	0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	.long	0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	.long	0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	.long	0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	.long	0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	.long	0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	.long	0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	.long	0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	.long	0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	.long	0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	.long	0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	.long	0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	.long	0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	.long	0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	.long	0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	.long	0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	.long	0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	.long	0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	.long	0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	.long	0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	.long	0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	.long	0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	.long	0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	.long	0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	.long	0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	.long	0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	.long	0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	.long	0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	.long	0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	.long	0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	.long	0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	.long	0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	.long	0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	.long	0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	.long	0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	.long	0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	.set	ADJFLAG,L_SCR2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	.set	SCALE,FP_SCR1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	.set	ADJSCALE,FP_SCR2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	.set	SC,FP_SCR3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	.set	ONEBYSC,FP_SCR4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	| xref	t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	|xref	t_extdnrm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	|xref	t_unfl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	|xref	t_ovfl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	.global	setoxd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) setoxd:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) |--entry point for EXP(X), X is denormalized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	movel		(%a0),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	andil		#0x80000000,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	oril		#0x00800000,%d0		| ...sign(X)*2^(-126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	movel		%d0,-(%sp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	fmoves		#0x3F800000,%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	fmovel		%d1,%fpcr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	fadds		(%sp)+,%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	.global	setox
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) setox:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) |--entry point for EXP(X), here X is finite, non-zero, and not NaN's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) |--Step 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	movel		(%a0),%d0	 | ...load part of input X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	andil		#0x7FFF0000,%d0	| ...biased expo. of X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	cmpil		#0x3FBE0000,%d0	| ...2^(-65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	bges		EXPC1		| ...normal case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	bra		EXPSM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) EXPC1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) |--The case |X| >= 2^(-65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 	movew		4(%a0),%d0	| ...expo. and partial sig. of |X|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	cmpil		#0x400CB167,%d0	| ...16380 log2 trunc. 16 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	blts		EXPMAIN	 | ...normal case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	bra		EXPBIG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) EXPMAIN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) |--Step 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) |--This is the normal branch:	2^(-65) <= |X| < 16380 log2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	fmovex		(%a0),%fp0	| ...load input from (a0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	fmovex		%fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	fmuls		#0x42B8AA3B,%fp0	| ...64/log2 * X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	fmovemx	%fp2-%fp2/%fp3,-(%a7)		| ...save fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	movel		#0,ADJFLAG(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	fmovel		%fp0,%d0		| ...N = int( X * 64/log2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	lea		EXPTBL,%a1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 	fmovel		%d0,%fp0		| ...convert to floating-format
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	movel		%d0,L_SCR1(%a6)	| ...save N temporarily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	andil		#0x3F,%d0		| ...D0 is J = N mod 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	lsll		#4,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	addal		%d0,%a1		| ...address of 2^(J/64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	movel		L_SCR1(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	asrl		#6,%d0		| ...D0 is M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	addiw		#0x3FFF,%d0	| ...biased expo. of 2^(M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	movew		L2,L_SCR1(%a6)	| ...prefetch L2, no need in CB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) EXPCONT1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) |--Step 3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) |--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	fmovex		%fp0,%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	fmuls		#0xBC317218,%fp0	| ...N * L1, L1 = lead(-log2/64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	fmulx		L2,%fp2		| ...N * L2, L1+L2 = -log2/64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	faddx		%fp1,%fp0		| ...X + N*L1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	faddx		%fp2,%fp0		| ...fp0 is R, reduced arg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) |	MOVE.W		#$3FA5,EXPA3	...load EXPA3 in cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) |--Step 4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) |--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	fmovex		%fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	fmulx		%fp1,%fp1		| ...fp1 IS S = R*R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	fmoves		#0x3AB60B70,%fp2	| ...fp2 IS A5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) |	MOVE.W		#0,2(%a1)	...load 2^(J/64) in cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	fmulx		%fp1,%fp2		| ...fp2 IS S*A5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	fmovex		%fp1,%fp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	fmuls		#0x3C088895,%fp3	| ...fp3 IS S*A4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	faddd		EXPA3,%fp2	| ...fp2 IS A3+S*A5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	faddd		EXPA2,%fp3	| ...fp3 IS A2+S*A4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	fmulx		%fp1,%fp2		| ...fp2 IS S*(A3+S*A5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	movew		%d0,SCALE(%a6)	| ...SCALE is 2^(M) in extended
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	clrw		SCALE+2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	movel		#0x80000000,SCALE+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	clrl		SCALE+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	fmulx		%fp1,%fp3		| ...fp3 IS S*(A2+S*A4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	fadds		#0x3F000000,%fp2	| ...fp2 IS A1+S*(A3+S*A5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	fmulx		%fp0,%fp3		| ...fp3 IS R*S*(A2+S*A4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	fmulx		%fp1,%fp2		| ...fp2 IS S*(A1+S*(A3+S*A5))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	faddx		%fp3,%fp0		| ...fp0 IS R+R*S*(A2+S*A4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) |					...fp3 released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	fmovex		(%a1)+,%fp1	| ...fp1 is lead. pt. of 2^(J/64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	faddx		%fp2,%fp0		| ...fp0 is EXP(R) - 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) |					...fp2 released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) |--Step 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) |--final reconstruction process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) |--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	fmulx		%fp1,%fp0		| ...2^(J/64)*(Exp(R)-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	fmovemx	(%a7)+,%fp2-%fp2/%fp3	| ...fp2 restored
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	fadds		(%a1),%fp0	| ...accurate 2^(J/64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	faddx		%fp1,%fp0		| ...2^(J/64) + 2^(J/64)*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	movel		ADJFLAG(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) |--Step 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	tstl		%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	beqs		NORMAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) ADJUST:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	fmulx		ADJSCALE(%a6),%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) NORMAL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	fmovel		%d1,%FPCR		| ...restore user FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	fmulx		SCALE(%a6),%fp0	| ...multiply 2^(M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) EXPSM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) |--Step 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	fmovemx	(%a0),%fp0-%fp0	| ...in case X is denormalized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	fmovel		%d1,%FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	fadds		#0x3F800000,%fp0	| ...1+X in user mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) EXPBIG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) |--Step 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	cmpil		#0x400CB27C,%d0	| ...16480 log2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	bgts		EXP2BIG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) |--Steps 8.2 -- 8.6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	fmovex		(%a0),%fp0	| ...load input from (a0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	fmovex		%fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	fmuls		#0x42B8AA3B,%fp0	| ...64/log2 * X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	fmovemx	 %fp2-%fp2/%fp3,-(%a7)		| ...save fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	movel		#1,ADJFLAG(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	fmovel		%fp0,%d0		| ...N = int( X * 64/log2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	lea		EXPTBL,%a1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	fmovel		%d0,%fp0		| ...convert to floating-format
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	movel		%d0,L_SCR1(%a6)			| ...save N temporarily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 	andil		#0x3F,%d0		 | ...D0 is J = N mod 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	lsll		#4,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	addal		%d0,%a1			| ...address of 2^(J/64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	movel		L_SCR1(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	asrl		#6,%d0			| ...D0 is K
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	movel		%d0,L_SCR1(%a6)			| ...save K temporarily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	asrl		#1,%d0			| ...D0 is M1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	subl		%d0,L_SCR1(%a6)			| ...a1 is M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	addiw		#0x3FFF,%d0		| ...biased expo. of 2^(M1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	movew		%d0,ADJSCALE(%a6)		| ...ADJSCALE := 2^(M1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	clrw		ADJSCALE+2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	movel		#0x80000000,ADJSCALE+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	clrl		ADJSCALE+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	movel		L_SCR1(%a6),%d0			| ...D0 is M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	addiw		#0x3FFF,%d0		| ...biased expo. of 2^(M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	bra		EXPCONT1		| ...go back to Step 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) EXP2BIG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) |--Step 9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	fmovel		%d1,%FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	movel		(%a0),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	bclrb		#sign_bit,(%a0)		| ...setox always returns positive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	cmpil		#0,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	blt		t_unfl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	bra		t_ovfl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	.global	setoxm1d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) setoxm1d:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) |--entry point for EXPM1(X), here X is denormalized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) |--Step 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	bra		t_extdnrm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 	.global	setoxm1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) setoxm1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) |--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) |--Step 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) |--Step 1.1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 	movel		(%a0),%d0	 | ...load part of input X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 	andil		#0x7FFF0000,%d0	| ...biased expo. of X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 	cmpil		#0x3FFD0000,%d0	| ...1/4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	bges		EM1CON1	 | ...|X| >= 1/4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	bra		EM1SM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) EM1CON1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) |--Step 1.3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) |--The case |X| >= 1/4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 	movew		4(%a0),%d0	| ...expo. and partial sig. of |X|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	cmpil		#0x4004C215,%d0	| ...70log2 rounded up to 16 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 	bles		EM1MAIN	 | ...1/4 <= |X| <= 70log2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 	bra		EM1BIG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) EM1MAIN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) |--Step 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) |--This is the case:	1/4 <= |X| <= 70 log2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 	fmovex		(%a0),%fp0	| ...load input from (a0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	fmovex		%fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 	fmuls		#0x42B8AA3B,%fp0	| ...64/log2 * X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 	fmovemx	%fp2-%fp2/%fp3,-(%a7)		| ...save fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) |	MOVE.W		#$3F81,EM1A4		...prefetch in CB mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 	fmovel		%fp0,%d0		| ...N = int( X * 64/log2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 	lea		EXPTBL,%a1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 	fmovel		%d0,%fp0		| ...convert to floating-format
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	movel		%d0,L_SCR1(%a6)			| ...save N temporarily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	andil		#0x3F,%d0		 | ...D0 is J = N mod 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	lsll		#4,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	addal		%d0,%a1			| ...address of 2^(J/64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 	movel		L_SCR1(%a6),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 	asrl		#6,%d0			| ...D0 is M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 	movel		%d0,L_SCR1(%a6)			| ...save a copy of M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) |	MOVE.W		#$3FDC,L2		...prefetch L2 in CB mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) |--Step 3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) |--a0 points to 2^(J/64), D0 and a1 both contain M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 	fmovex		%fp0,%fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 	fmuls		#0xBC317218,%fp0	| ...N * L1, L1 = lead(-log2/64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 	fmulx		L2,%fp2		| ...N * L2, L1+L2 = -log2/64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	faddx		%fp1,%fp0	 | ...X + N*L1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	faddx		%fp2,%fp0	 | ...fp0 is R, reduced arg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) |	MOVE.W		#$3FC5,EM1A2		...load EM1A2 in cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	addiw		#0x3FFF,%d0		| ...D0 is biased expo. of 2^M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) |--Step 4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) |--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	fmovex		%fp0,%fp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 	fmulx		%fp1,%fp1		| ...fp1 IS S = R*R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	fmoves		#0x3950097B,%fp2	| ...fp2 IS a6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) |	MOVE.W		#0,2(%a1)	...load 2^(J/64) in cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 	fmulx		%fp1,%fp2		| ...fp2 IS S*A6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	fmovex		%fp1,%fp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 	fmuls		#0x3AB60B6A,%fp3	| ...fp3 IS S*A5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	faddd		EM1A4,%fp2	| ...fp2 IS A4+S*A6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	faddd		EM1A3,%fp3	| ...fp3 IS A3+S*A5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 	movew		%d0,SC(%a6)		| ...SC is 2^(M) in extended
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	clrw		SC+2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 	movel		#0x80000000,SC+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	clrl		SC+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 	fmulx		%fp1,%fp2		| ...fp2 IS S*(A4+S*A6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	movel		L_SCR1(%a6),%d0		| ...D0 is	M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	negw		%d0		| ...D0 is -M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	fmulx		%fp1,%fp3		| ...fp3 IS S*(A3+S*A5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	addiw		#0x3FFF,%d0	| ...biased expo. of 2^(-M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 	faddd		EM1A2,%fp2	| ...fp2 IS A2+S*(A4+S*A6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	fadds		#0x3F000000,%fp3	| ...fp3 IS A1+S*(A3+S*A5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	fmulx		%fp1,%fp2		| ...fp2 IS S*(A2+S*(A4+S*A6))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 	oriw		#0x8000,%d0	| ...signed/expo. of -2^(-M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	movew		%d0,ONEBYSC(%a6)	| ...OnebySc is -2^(-M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 	clrw		ONEBYSC+2(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 	movel		#0x80000000,ONEBYSC+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 	clrl		ONEBYSC+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	fmulx		%fp3,%fp1		| ...fp1 IS S*(A1+S*(A3+S*A5))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) |					...fp3 released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	fmulx		%fp0,%fp2		| ...fp2 IS R*S*(A2+S*(A4+S*A6))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	faddx		%fp1,%fp0		| ...fp0 IS R+S*(A1+S*(A3+S*A5))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) |					...fp1 released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 	faddx		%fp2,%fp0		| ...fp0 IS EXP(R)-1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) |					...fp2 released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	fmovemx	(%a7)+,%fp2-%fp2/%fp3	| ...fp2 restored
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) |--Step 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) |--Compute 2^(J/64)*p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	fmulx		(%a1),%fp0	| ...2^(J/64)*(Exp(R)-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) |--Step 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) |--Step 6.1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	movel		L_SCR1(%a6),%d0		| ...retrieve M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 	cmpil		#63,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 	bles		MLE63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) |--Step 6.2	M >= 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 	fmoves		12(%a1),%fp1	| ...fp1 is t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 	faddx		ONEBYSC(%a6),%fp1	| ...fp1 is t+OnebySc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 	faddx		%fp1,%fp0		| ...p+(t+OnebySc), fp1 released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 	faddx		(%a1),%fp0	| ...T+(p+(t+OnebySc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	bras		EM1SCALE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) MLE63:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) |--Step 6.3	M <= 63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 	cmpil		#-3,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 	bges		MGEN3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) MLTN3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) |--Step 6.4	M <= -4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 	fadds		12(%a1),%fp0	| ...p+t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	faddx		(%a1),%fp0	| ...T+(p+t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 	faddx		ONEBYSC(%a6),%fp0	| ...OnebySc + (T+(p+t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 	bras		EM1SCALE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) MGEN3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) |--Step 6.5	-3 <= M <= 63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 	fmovex		(%a1)+,%fp1	| ...fp1 is T
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 	fadds		(%a1),%fp0	| ...fp0 is p+t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 	faddx		ONEBYSC(%a6),%fp1	| ...fp1 is T+OnebySc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 	faddx		%fp1,%fp0		| ...(T+OnebySc)+(p+t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) EM1SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) |--Step 6.6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	fmovel		%d1,%FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 	fmulx		SC(%a6),%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) EM1SM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) |--Step 7	|X| < 1/4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 	cmpil		#0x3FBE0000,%d0	| ...2^(-65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 	bges		EM1POLY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) EM1TINY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) |--Step 8	|X| < 2^(-65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 	cmpil		#0x00330000,%d0	| ...2^(-16312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 	blts		EM12TINY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) |--Step 8.2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 	movel		#0x80010000,SC(%a6)	| ...SC is -2^(-16382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 	movel		#0x80000000,SC+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 	clrl		SC+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 	fmovex		(%a0),%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 	fmovel		%d1,%FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 	faddx		SC(%a6),%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) EM12TINY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) |--Step 8.3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 	fmovex		(%a0),%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 	fmuld		TWO140,%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 	movel		#0x80010000,SC(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 	movel		#0x80000000,SC+4(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 	clrl		SC+8(%a6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 	faddx		SC(%a6),%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 	fmovel		%d1,%FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 	fmuld		TWON140,%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) EM1POLY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) |--Step 9	exp(X)-1 by a simple polynomial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 	fmovex		(%a0),%fp0	| ...fp0 is X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 	fmulx		%fp0,%fp0		| ...fp0 is S := X*X
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 	fmovemx	%fp2-%fp2/%fp3,-(%a7)	| ...save fp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 	fmoves		#0x2F30CAA8,%fp1	| ...fp1 is B12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 	fmulx		%fp0,%fp1		| ...fp1 is S*B12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 	fmoves		#0x310F8290,%fp2	| ...fp2 is B11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 	fadds		#0x32D73220,%fp1	| ...fp1 is B10+S*B12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 	fmulx		%fp0,%fp2		| ...fp2 is S*B11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 	fmulx		%fp0,%fp1		| ...fp1 is S*(B10 + ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 	fadds		#0x3493F281,%fp2	| ...fp2 is B9+S*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 	faddd		EM1B8,%fp1	| ...fp1 is B8+S*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 	fmulx		%fp0,%fp2		| ...fp2 is S*(B9+...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) 	fmulx		%fp0,%fp1		| ...fp1 is S*(B8+...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 	faddd		EM1B7,%fp2	| ...fp2 is B7+S*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 	faddd		EM1B6,%fp1	| ...fp1 is B6+S*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 	fmulx		%fp0,%fp2		| ...fp2 is S*(B7+...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 	fmulx		%fp0,%fp1		| ...fp1 is S*(B6+...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 	faddd		EM1B5,%fp2	| ...fp2 is B5+S*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 	faddd		EM1B4,%fp1	| ...fp1 is B4+S*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 	fmulx		%fp0,%fp2		| ...fp2 is S*(B5+...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	fmulx		%fp0,%fp1		| ...fp1 is S*(B4+...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 	faddd		EM1B3,%fp2	| ...fp2 is B3+S*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	faddx		EM1B2,%fp1	| ...fp1 is B2+S*...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 	fmulx		%fp0,%fp2		| ...fp2 is S*(B3+...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 	fmulx		%fp0,%fp1		| ...fp1 is S*(B2+...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 	fmulx		%fp0,%fp2		| ...fp2 is S*S*(B3+...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 	fmulx		(%a0),%fp1	| ...fp1 is X*S*(B2...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 	fmuls		#0x3F000000,%fp0	| ...fp0 is S*B1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 	faddx		%fp2,%fp1		| ...fp1 is Q
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) |					...fp2 released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 	fmovemx	(%a7)+,%fp2-%fp2/%fp3	| ...fp2 restored
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 	faddx		%fp1,%fp0		| ...fp0 is S*B1+Q
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) |					...fp1 released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 	fmovel		%d1,%FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 	faddx		(%a0),%fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) EM1BIG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) |--Step 10	|X| > 70 log2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 	movel		(%a0),%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 	cmpil		#0,%d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 	bgt		EXPC1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) |--Step 10.2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 	fmoves		#0xBF800000,%fp0	| ...fp0 is -1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 	fmovel		%d1,%FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 	fadds		#0x00800000,%fp0	| ...-1 + 2^(-126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 	bra		t_frcinx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 	|end