Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) |	decbin.sa 3.3 12/19/90
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) |	Description: Converts normalized packed bcd value pointed to by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) |	register A6 to extended-precision value in FP0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) |	Input: Normalized packed bcd value in ETEMP(a6).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) |	Output:	Exact floating-point representation of the packed bcd value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) |	Saves and Modifies: D2-D5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) |	Speed: The program decbin takes ??? cycles to execute.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) |	Object Size:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) |	External Reference(s): None.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) |	Algorithm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) |	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) |	and NaN operands are dispatched without entering this routine)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) |	value in 68881/882 format at location ETEMP(A6).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) |	A1.	Convert the bcd exponent to binary by successive adds and muls.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) |	Set the sign according to SE. Subtract 16 to compensate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) |	for the mantissa which is to be interpreted as 17 integer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) |	digits, rather than 1 integer and 16 fraction digits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) |	Note: this operation can never overflow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) |	A2. Convert the bcd mantissa to binary by successive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) |	adds and muls in FP0. Set the sign according to SM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) |	The mantissa digits will be converted with the decimal point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) |	assumed following the least-significant digit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) |	Note: this operation can never overflow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) |	A3. Count the number of leading/trailing zeros in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) |	bcd string.  If SE is positive, count the leading zeros;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) |	if negative, count the trailing zeros.  Set the adjusted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) |	exponent equal to the exponent from A1 and the zero count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) |	added if SM = 1 and subtracted if SM = 0.  Scale the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) |	mantissa the equivalent of forcing in the bcd value:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) |	SM = 0	a non-zero digit in the integer position
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) |	SM = 1	a non-zero digit in Mant0, lsd of the fraction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) |	this will insure that any value, regardless of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) |	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) |	consistently.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) |	A4. Calculate the factor 10^exp in FP1 using a table of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) |	10^(2^n) values.  To reduce the error in forming factors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) |	greater than 10^27, a directed rounding scheme is used with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) |	tables rounded to RN, RM, and RP, according to the table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) |	in the comments of the pwrten section.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) |	A5. Form the final binary number by scaling the mantissa by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) |	the exponent factor.  This is done by multiplying the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) |	mantissa in FP0 by the factor in FP1 if the adjusted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) |	exponent sign is positive, and dividing FP0 by FP1 if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) |	it is negative.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) |	Clean up and return.  Check if the final mul or div resulted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) |	in an inex2 exception.  If so, set inex1 in the fpsr and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) |	check if the inex1 exception is enabled.  If so, set d7 upper
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) |	word to $0100.  This will signal unimp.sa that an enabled inex1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) |	exception occurred.  Unimp will fix the stack.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) |		Copyright (C) Motorola, Inc. 1990
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) |			All Rights Reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) |       For details on the license for this file, please see the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) |       file, README, in this same directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) |DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	|section	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) #include "fpsp.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) |	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) |	to nearest, minus, and plus, respectively.  The tables include
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) |	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) |	is required until the power is greater than 27, however, all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) |	tables include the first 5 for ease of indexing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	|xref	PTENRN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	|xref	PTENRM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	|xref	PTENRP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) RTABLE:	.byte	0,0,0,0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	.byte	2,3,2,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	.byte	2,3,3,2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	.byte	3,2,2,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	.global	decbin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	.global	calc_e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	.global	pwrten
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	.global	calc_m
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	.global	norm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	.global	ap_st_z
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	.global	ap_st_n
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	.set	FNIBS,7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	.set	FSTRT,0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	.set	ESTRT,4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	.set	EDIGITS,2	|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) | Constants in single precision
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) FZERO:	.long	0x00000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) FONE:	.long	0x3F800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) FTEN:	.long	0x41200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	.set	TEN,10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) decbin:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	| fmovel	#0,FPCR		;clr real fpcr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	moveml	%d2-%d5,-(%a7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) | Calculate exponent:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) |  1. Copy bcd value in memory for use as a working copy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) |  2. Calculate absolute value of exponent in d1 by mul and add.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) |  3. Correct for exponent sign.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) |  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) |     (i.e., all digits assumed left of the decimal point.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) | Register usage:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) |  calc_e:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) |	(*)  d0: temp digit storage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) |	(*)  d1: accumulator for binary exponent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) |	(*)  d2: digit count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) |	(*)  d3: offset pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) |	( )  d4: first word of bcd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) |	( )  a0: pointer to working bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) |	( )  a6: pointer to original bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) |	(*)  FP_SCR1: working copy of original bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) |	(*)  L_SCR1: copy of original exponent word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) calc_e:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	movel	#EDIGITS,%d2	|# of nibbles (digits) in fraction part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	moveql	#ESTRT,%d3	|counter to pick up digits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	leal	FP_SCR1(%a6),%a0	|load tmp bcd storage address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	movel	ETEMP(%a6),(%a0)	|save input bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	movel	ETEMP_HI(%a6),4(%a0) |save words 2 and 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	movel	ETEMP_LO(%a6),8(%a0) |and work with these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	movel	(%a0),%d4	|get first word of bcd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	clrl	%d1		|zero d1 for accumulator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) e_gd:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	mulul	#TEN,%d1	|mul partial product by one digit place
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend into d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	addl	%d0,%d1		|d1 = d1 + d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	addqb	#4,%d3		|advance d3 to the next digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	dbf	%d2,e_gd	|if we have used all 3 digits, exit loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	btst	#30,%d4		|get SE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	beqs	e_pos		|don't negate if pos
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	negl	%d1		|negate before subtracting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) e_pos:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	subl	#16,%d1		|sub to compensate for shift of mant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	bges	e_save		|if still pos, do not neg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	negl	%d1		|now negative, make pos and set SE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	orl	#0x40000000,%d4	|set SE in d4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	orl	#0x40000000,(%a0)	|and in working bcd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) e_save:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	movel	%d1,L_SCR1(%a6)	|save exp in memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) | Calculate mantissa:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) |  1. Calculate absolute value of mantissa in fp0 by mul and add.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) |  2. Correct for mantissa sign.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) |     (i.e., all digits assumed left of the decimal point.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) | Register usage:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) |  calc_m:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) |	(*)  d0: temp digit storage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) |	(*)  d1: lword counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) |	(*)  d2: digit count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) |	(*)  d3: offset pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) |	( )  d4: words 2 and 3 of bcd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) |	( )  a0: pointer to working bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) |	( )  a6: pointer to original bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) |	(*) fp0: mantissa accumulator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) |	( )  FP_SCR1: working copy of original bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) |	( )  L_SCR1: copy of original exponent word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) calc_m:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	moveql	#1,%d1		|word counter, init to 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	fmoves	FZERO,%fp0	|accumulator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) |  Since the packed number has a long word between the first & second parts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) |  get the integer digit then skip down & get the rest of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) |  mantissa.  We will unroll the loop once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	bfextu	(%a0){#28:#4},%d0	|integer part is ls digit in long word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	faddb	%d0,%fp0		|add digit to sum in fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) |  Get the rest of the mantissa.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) loadlw:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	movel	(%a0,%d1.L*4),%d4	|load mantissa longword into d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	moveql	#FSTRT,%d3	|counter to pick up digits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	moveql	#FNIBS,%d2	|reset number of digits per a0 ptr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) md2b:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	fmuls	FTEN,%fp0	|fp0 = fp0 * 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	faddb	%d0,%fp0	|fp0 = fp0 + digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) |  If all the digits (8) in that long word have been converted (d2=0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) |  then inc d1 (=2) to point to the next long word and reset d3 to 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) |  to initialize the digit offset, and set d2 to 7 for the digit count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) |  else continue with this long word.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	addqb	#4,%d3		|advance d3 to the next digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	dbf	%d2,md2b		|check for last digit in this lw
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) nextlw:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	addql	#1,%d1		|inc lw pointer in mantissa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	cmpl	#2,%d1		|test for last lw
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	ble	loadlw		|if not, get last one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) |  Check the sign of the mant and make the value in fp0 the same sign.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) m_sign:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	btst	#31,(%a0)	|test sign of the mantissa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	beq	ap_st_z		|if clear, go to append/strip zeros
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	fnegx	%fp0		|if set, negate fp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) | Append/strip zeros:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) |  For adjusted exponents which have an absolute value greater than 27*,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) |  this routine calculates the amount needed to normalize the mantissa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) |  for the adjusted exponent.  That number is subtracted from the exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) |  if the exp was positive, and added if it was negative.  The purpose
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) |  of this is to reduce the value of the exponent and the possibility
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) |  of error in calculation of pwrten.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) |  1. Branch on the sign of the adjusted exponent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) |  2p.(positive exp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) |   2. Check M16 and the digits in lwords 2 and 3 in descending order.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) |   3. Add one for each zero encountered until a non-zero digit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) |   4. Subtract the count from the exp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) |   5. Check if the exp has crossed zero in #3 above; make the exp abs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) |	   and set SE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) |	6. Multiply the mantissa by 10**count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) |  2n.(negative exp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) |   2. Check the digits in lwords 3 and 2 in descending order.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) |   3. Add one for each zero encountered until a non-zero digit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) |   4. Add the count to the exp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) |   5. Check if the exp has crossed zero in #3 above; clear SE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) |   6. Divide the mantissa by 10**count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) |  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) |   any adjustment due to append/strip zeros will drive the resultant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) |   exponent towards zero.  Since all pwrten constants with a power
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) |   of 27 or less are exact, there is no need to use this routine to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) |   attempt to lessen the resultant exponent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) | Register usage:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) |  ap_st_z:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) |	(*)  d0: temp digit storage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) |	(*)  d1: zero count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) |	(*)  d2: digit count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) |	(*)  d3: offset pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) |	( )  d4: first word of bcd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) |	(*)  d5: lword counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) |	( )  a0: pointer to working bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) |	( )  FP_SCR1: working copy of original bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) |	( )  L_SCR1: copy of original exponent word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) | First check the absolute value of the exponent to see if this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) | routine is necessary.  If so, then check the sign of the exponent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) | and do append (+) or strip (-) zeros accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) | This section handles a positive adjusted exponent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) ap_st_z:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	movel	L_SCR1(%a6),%d1	|load expA for range test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	cmpl	#27,%d1		|test is with 27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	ble	pwrten		|if abs(expA) <28, skip ap/st zeros
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	btst	#30,(%a0)	|check sign of exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	bne	ap_st_n		|if neg, go to neg side
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	clrl	%d1		|zero count reg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	movel	(%a0),%d4		|load lword 1 to d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	bfextu	%d4{#28:#4},%d0	|get M16 in d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	bnes	ap_p_fx		|if M16 is non-zero, go fix exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	addql	#1,%d1		|inc zero count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	moveql	#1,%d5		|init lword counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	movel	(%a0,%d5.L*4),%d4	|get lword 2 to d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	bnes	ap_p_cl		|if lw 2 is zero, skip it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	addql	#8,%d1		|and inc count by 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	addql	#1,%d5		|inc lword counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	movel	(%a0,%d5.L*4),%d4	|get lword 3 to d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) ap_p_cl:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	clrl	%d3		|init offset reg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	moveql	#7,%d2		|init digit counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) ap_p_gd:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	bfextu	%d4{%d3:#4},%d0	|get digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	bnes	ap_p_fx		|if non-zero, go to fix exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	addql	#4,%d3		|point to next digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	addql	#1,%d1		|inc digit counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	dbf	%d2,ap_p_gd	|get next digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) ap_p_fx:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	movel	%d1,%d0		|copy counter to d2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	subl	%d0,%d1		|subtract count from exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	bges	ap_p_fm		|if still pos, go to pwrten
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	negl	%d1		|now its neg; get abs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	movel	(%a0),%d4		|load lword 1 to d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	orl	#0x40000000,%d4	| and set SE in d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	orl	#0x40000000,(%a0)	| and in memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) | Calculate the mantissa multiplier to compensate for the striping of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) | zeros from the mantissa.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) ap_p_fm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	movel	#PTENRN,%a1	|get address of power-of-ten table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	clrl	%d3		|init table index
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	fmoves	FONE,%fp1	|init fp1 to 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	moveql	#3,%d2		|init d2 to count bits in counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) ap_p_el:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	asrl	#1,%d0		|shift lsb into carry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	bccs	ap_p_en		|if 1, mul fp1 by pwrten factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) ap_p_en:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	addl	#12,%d3		|inc d3 to next rtable entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	tstl	%d0		|check if d0 is zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	bnes	ap_p_el		|if not, get next bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	fmulx	%fp1,%fp0		|mul mantissa by 10**(no_bits_shifted)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	bra	pwrten		|go calc pwrten
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) | This section handles a negative adjusted exponent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) ap_st_n:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	clrl	%d1		|clr counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	moveql	#2,%d5		|set up d5 to point to lword 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	movel	(%a0,%d5.L*4),%d4	|get lword 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	bnes	ap_n_cl		|if not zero, check digits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	subl	#1,%d5		|dec d5 to point to lword 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	addql	#8,%d1		|inc counter by 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	movel	(%a0,%d5.L*4),%d4	|get lword 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) ap_n_cl:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	movel	#28,%d3		|point to last digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	moveql	#7,%d2		|init digit counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) ap_n_gd:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	bfextu	%d4{%d3:#4},%d0	|get digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	bnes	ap_n_fx		|if non-zero, go to exp fix
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	subql	#4,%d3		|point to previous digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	addql	#1,%d1		|inc digit counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	dbf	%d2,ap_n_gd	|get next digit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) ap_n_fx:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	movel	%d1,%d0		|copy counter to d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	subl	%d0,%d1		|subtract count from exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	bgts	ap_n_fm		|if still pos, go fix mantissa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	negl	%d1		|take abs of exp and clr SE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	movel	(%a0),%d4		|load lword 1 to d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	andl	#0xbfffffff,%d4	| and clr SE in d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	andl	#0xbfffffff,(%a0)	| and in memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) | Calculate the mantissa multiplier to compensate for the appending of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) | zeros to the mantissa.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) ap_n_fm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	movel	#PTENRN,%a1	|get address of power-of-ten table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	clrl	%d3		|init table index
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	fmoves	FONE,%fp1	|init fp1 to 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	moveql	#3,%d2		|init d2 to count bits in counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) ap_n_el:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	asrl	#1,%d0		|shift lsb into carry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	bccs	ap_n_en		|if 1, mul fp1 by pwrten factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) ap_n_en:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	addl	#12,%d3		|inc d3 to next rtable entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	tstl	%d0		|check if d0 is zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	bnes	ap_n_el		|if not, get next bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	fdivx	%fp1,%fp0		|div mantissa by 10**(no_bits_shifted)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) | Calculate power-of-ten factor from adjusted and shifted exponent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) | Register usage:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) |  pwrten:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) |	(*)  d0: temp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) |	( )  d1: exponent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) |	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) |	(*)  d3: FPCR work copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) |	( )  d4: first word of bcd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) |	(*)  a1: RTABLE pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) |  calc_p:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) |	(*)  d0: temp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) |	( )  d1: exponent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) |	(*)  d3: PWRTxx table index
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) |	( )  a0: pointer to working copy of bcd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) |	(*)  a1: PWRTxx pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) |	(*) fp1: power-of-ten accumulator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) | Pwrten calculates the exponent factor in the selected rounding mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) | according to the following table:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) |	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) |	ANY	  ANY	RN	RN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) |	 +	   +	RP	RP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) |	 -	   +	RP	RM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) |	 +	   -	RP	RM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) |	 -	   -	RP	RP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) |	 +	   +	RM	RM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) |	 -	   +	RM	RP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) |	 +	   -	RM	RP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) |	 -	   -	RM	RM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) |	 +	   +	RZ	RM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) |	 -	   +	RZ	RM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) |	 +	   -	RZ	RP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) |	 -	   -	RZ	RP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) pwrten:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	movel	USER_FPCR(%a6),%d3 |get user's FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	bfextu	%d3{#26:#2},%d2	|isolate rounding mode bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	movel	(%a0),%d4		|reload 1st bcd word to d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	asll	#2,%d2		|format d2 to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	bfextu	%d4{#0:#2},%d0	| {FPCR[6],FPCR[5],SM,SE}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	addl	%d0,%d2		|in d2 as index into RTABLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	leal	RTABLE,%a1	|load rtable base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	moveb	(%a1,%d2),%d0	|load new rounding bits from table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	clrl	%d3			|clear d3 to force no exc and extended
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	bfins	%d0,%d3{#26:#2}	|stuff new rounding bits in FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	fmovel	%d3,%FPCR		|write new FPCR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	asrl	#1,%d0		|write correct PTENxx table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	bccs	not_rp		|to a1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	leal	PTENRP,%a1	|it is RP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	bras	calc_p		|go to init section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) not_rp:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	asrl	#1,%d0		|keep checking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	bccs	not_rm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	leal	PTENRM,%a1	|it is RM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	bras	calc_p		|go to init section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) not_rm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	leal	PTENRN,%a1	|it is RN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) calc_p:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	movel	%d1,%d0		|copy exp to d0;use d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	bpls	no_neg		|if exp is negative,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	negl	%d0		|invert it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	orl	#0x40000000,(%a0)	|and set SE bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) no_neg:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	clrl	%d3		|table index
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	fmoves	FONE,%fp1	|init fp1 to 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) e_loop:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	asrl	#1,%d0		|shift next bit into carry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	bccs	e_next		|if zero, skip the mul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) e_next:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	addl	#12,%d3		|inc d3 to next rtable entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	tstl	%d0		|check if d0 is zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	bnes	e_loop		|not zero, continue shifting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) |  Check the sign of the adjusted exp and make the value in fp0 the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) |  same sign. If the exp was pos then multiply fp1*fp0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) |  else divide fp0/fp1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) | Register Usage:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) |  norm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) |	( )  a0: pointer to working bcd value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) |	(*) fp0: mantissa accumulator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) |	( ) fp1: scaling factor - 10**(abs(exp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) norm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	btst	#30,(%a0)	|test the sign of the exponent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	beqs	mul		|if clear, go to multiply
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) div:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	fdivx	%fp1,%fp0		|exp is negative, so divide mant by exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	bras	end_dec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) mul:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	fmulx	%fp1,%fp0		|exp is positive, so multiply by exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) | Clean up and return with result in fp0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) | If the final mul/div in decbin incurred an inex exception,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) | it will be inex2, but will be reported as inex1 by get_op.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) end_dec:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	fmovel	%FPSR,%d0		|get status register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	bclrl	#inex2_bit+8,%d0	|test for inex2 and clear it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	fmovel	%d0,%FPSR		|return status reg w/o inex2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	beqs	no_exc		|skip this if no exc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	orl	#inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) no_exc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	moveml	(%a7)+,%d2-%d5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	rts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	|end