^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * This file is subject to the terms and conditions of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * License. See the file "COPYING" in the main directory of this archive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * This file contains NUMA specific variables and functions which can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * be split away from DISCONTIGMEM and are used on NUMA machines with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * contiguous memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * 2002/08/07 Erich Focht <efocht@ess.nec.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/node.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/memblock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <asm/mmzone.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <asm/numa.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * The following structures are usually initialized by ACPI or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * similar mechanisms and describe the NUMA characteristics of the machine.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) int num_node_memblks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) struct node_memblk_s node_memblk[NR_NODE_MEMBLKS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) struct node_cpuid_s node_cpuid[NR_CPUS] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) { [0 ... NR_CPUS-1] = { .phys_id = 0, .nid = NUMA_NO_NODE } };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * This is a matrix with "distances" between nodes, they should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * proportional to the memory access latency ratios.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) u8 numa_slit[MAX_NUMNODES * MAX_NUMNODES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) int __node_distance(int from, int to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) return slit_distance(from, to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) EXPORT_SYMBOL(__node_distance);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) /* Identify which cnode a physical address resides on */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) paddr_to_nid(unsigned long paddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) for (i = 0; i < num_node_memblks; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) if (paddr >= node_memblk[i].start_paddr &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) paddr < node_memblk[i].start_paddr + node_memblk[i].size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) return (i < num_node_memblks) ? node_memblk[i].nid : (num_node_memblks ? -1 : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) EXPORT_SYMBOL(paddr_to_nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #if defined(CONFIG_SPARSEMEM) && defined(CONFIG_NUMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * Because of holes evaluate on section limits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * If the section of memory exists, then return the node where the section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * resides. Otherwise return node 0 as the default. This is used by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) * SPARSEMEM to allocate the SPARSEMEM sectionmap on the NUMA node where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) * the section resides.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) int __meminit __early_pfn_to_nid(unsigned long pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) struct mminit_pfnnid_cache *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) int i, section = pfn >> PFN_SECTION_SHIFT, ssec, esec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) if (section >= state->last_start && section < state->last_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) return state->last_nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) for (i = 0; i < num_node_memblks; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) ssec = node_memblk[i].start_paddr >> PA_SECTION_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) esec = (node_memblk[i].start_paddr + node_memblk[i].size +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) ((1L << PA_SECTION_SHIFT) - 1)) >> PA_SECTION_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) if (section >= ssec && section < esec) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) state->last_start = ssec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) state->last_end = esec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) state->last_nid = node_memblk[i].nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) return node_memblk[i].nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) void numa_clear_node(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) unmap_cpu_from_node(cpu, NUMA_NO_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #ifdef CONFIG_MEMORY_HOTPLUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) * SRAT information is stored in node_memblk[], then we can use SRAT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * information at memory-hot-add if necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) int memory_add_physaddr_to_nid(u64 addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) int nid = paddr_to_nid(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) if (nid < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) return nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #endif