Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Optimized version of the standard strlen() function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Inputs:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *	in0	address of string
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Outputs:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *	ret0	the number of characters in the string (0 if empty string)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *	does not count the \0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * Copyright (C) 1999, 2001 Hewlett-Packard Co
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  *	Stephane Eranian <eranian@hpl.hp.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * 09/24/99 S.Eranian add speculation recovery code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <asm/asmmacro.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <asm/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) // This is an enhanced version of the basic strlen. it includes a combination
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) // of compute zero index (czx), parallel comparisons, speculative loads and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) // loop unroll using rotating registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) // General Ideas about the algorithm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) //	  The goal is to look at the string in chunks of 8 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) //	  so we need to do a few extra checks at the beginning because the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) //	  string may not be 8-byte aligned. In this case we load the 8byte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) //	  quantity which includes the start of the string and mask the unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) //	  bytes with 0xff to avoid confusing czx.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) //	  We use speculative loads and software pipelining to hide memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) //	  latency and do read ahead safely. This way we defer any exception.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) //	  Because we don't want the kernel to be relying on particular
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) //	  settings of the DCR register, we provide recovery code in case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) //	  speculation fails. The recovery code is going to "redo" the work using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) //	  only normal loads. If we still get a fault then we generate a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) //	  kernel panic. Otherwise we return the strlen as usual.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) //	  The fact that speculation may fail can be caused, for instance, by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) //	  the DCR.dm bit being set. In this case TLB misses are deferred, i.e.,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) //	  a NaT bit will be set if the translation is not present. The normal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) //	  load, on the other hand, will cause the translation to be inserted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) //	  if the mapping exists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) //	  It should be noted that we execute recovery code only when we need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) //	  to use the data that has been speculatively loaded: we don't execute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) //	  recovery code on pure read ahead data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) // Remarks:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) //	- the cmp r0,r0 is used as a fast way to initialize a predicate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) //	  register to 1. This is required to make sure that we get the parallel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) //	  compare correct.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) //	- we don't use the epilogue counter to exit the loop but we need to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) //	  it to zero beforehand.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) //	- after the loop we must test for Nat values because neither the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) //	  czx nor cmp instruction raise a NaT consumption fault. We must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) //	  careful not to look too far for a Nat for which we don't care.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) //	  For instance we don't need to look at a NaT in val2 if the zero byte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) //	  was in val1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) //	- Clearly performance tuning is required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define saved_pfs	r11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define	tmp		r10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #define base		r16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define orig		r17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define saved_pr	r18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define src		r19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) #define mask		r20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) #define val		r21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define val1		r22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define val2		r23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) GLOBAL_ENTRY(strlen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	.prologue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	.save ar.pfs, saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	alloc saved_pfs=ar.pfs,11,0,0,8 // rotating must be multiple of 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	.rotr v[2], w[2]	// declares our 4 aliases
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	extr.u tmp=in0,0,3	// tmp=least significant 3 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	mov orig=in0		// keep trackof initial byte address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	dep src=0,in0,0,3	// src=8byte-aligned in0 address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	.save pr, saved_pr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	mov saved_pr=pr		// preserve predicates (rotation)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	.body
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	ld8 v[1]=[src],8	// must not speculate: can fail here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	shl tmp=tmp,3		// multiply by 8bits/byte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	mov mask=-1		// our mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	ld8.s w[1]=[src],8	// speculatively load next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	cmp.eq p6,p0=r0,r0	// sets p6 to true for cmp.and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	sub tmp=64,tmp		// how many bits to shift our mask on the right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	shr.u	mask=mask,tmp	// zero enough bits to hold v[1] valuable part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	mov ar.ec=r0		// clear epilogue counter (saved in ar.pfs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	add base=-16,src	// keep track of aligned base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	or v[1]=v[1],mask	// now we have a safe initial byte pattern
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	ld8.s v[0]=[src],8	// speculatively load next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	czx1.r val1=v[1]	// search 0 byte from right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	czx1.r val2=w[1]	// search 0 byte from right following 8bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	ld8.s w[0]=[src],8	// speculatively load next to next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	cmp.eq.and p6,p0=8,val1	// p6 = p6 and val1==8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	cmp.eq.and p6,p0=8,val2	// p6 = p6 and mask==8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) (p6)	br.wtop.dptk 1b		// loop until p6 == 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	// We must return try the recovery code iff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	// val1_is_nat || (val1==8 && val2_is_nat)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	// XXX Fixme
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	//	- there must be a better way of doing the test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	cmp.eq  p8,p9=8,val1	// p6 = val1 had zero (disambiguate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	tnat.nz p6,p7=val1	// test NaT on val1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) (p6)	br.cond.spnt .recover	// jump to recovery if val1 is NaT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	// if we come here p7 is true, i.e., initialized for // cmp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	cmp.eq.and  p7,p0=8,val1// val1==8?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	tnat.nz.and p7,p0=val2	// test NaT if val2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) (p7)	br.cond.spnt .recover	// jump to recovery if val2 is NaT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) (p8)	mov val1=val2		// the other test got us out of the loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) (p8)	adds src=-16,src	// correct position when 3 ahead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) (p9)	adds src=-24,src	// correct position when 4 ahead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	sub ret0=src,orig	// distance from base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	sub tmp=8,val1		// which byte in word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	sub ret0=ret0,tmp	// adjust
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	br.ret.sptk.many rp	// end of normal execution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	// Outlined recovery code when speculation failed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	// This time we don't use speculation and rely on the normal exception
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	// mechanism. that's why the loop is not as good as the previous one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	// because read ahead is not possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	// IMPORTANT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	// Please note that in the case of strlen() as opposed to strlen_user()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	// we don't use the exception mechanism, as this function is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	// supposed to fail. If that happens it means we have a bug and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	// code will cause of kernel fault.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	// XXX Fixme
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	//	- today we restart from the beginning of the string instead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	//	  of trying to continue where we left off.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) .recover:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	ld8 val=[base],8	// will fail if unrecoverable fault
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	or val=val,mask		// remask first bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	cmp.eq p0,p6=r0,r0	// nullify first ld8 in loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	// ar.ec is still zero here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) (p6)	ld8 val=[base],8	// will fail if unrecoverable fault
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	czx1.r val1=val		// search 0 byte from right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	cmp.eq p6,p0=8,val1	// val1==8 ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) (p6)	br.wtop.dptk 2b		// loop until p6 == 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	;;			// (avoid WAW on p63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	sub ret0=base,orig	// distance from base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	sub tmp=8,val1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	sub ret0=ret0,tmp	// length=now - back -1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	br.ret.sptk.many rp	// end of successful recovery code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) END(strlen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) EXPORT_SYMBOL(strlen)