Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  3)  * Copyright (C) 1999-2000 Hewlett-Packard Co
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  4)  * Copyright (C) 1999-2000 David Mosberger-Tang <davidm@hpl.hp.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  6)  * 64-bit integer division.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  8)  * This code is based on the application note entitled "Divide, Square Root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  9)  * and Remainder Algorithms for the IA-64 Architecture".  This document
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10)  * is available as Intel document number 248725-002 or via the web at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11)  * http://developer.intel.com/software/opensource/numerics/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)  * For more details on the theory behind these algorithms, see "IA-64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)  * and Elementary Functions" by Peter Markstein; HP Professional Books
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15)  * (http://www.goodreads.com/book/show/2019887.Ia_64_and_Elementary_Functions)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <asm/asmmacro.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <asm/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #ifdef MODULO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) # define OP	mod
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) # define OP	div
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #ifdef UNSIGNED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) # define SGN	u
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) # define INT_TO_FP(a,b)	fcvt.xuf.s1 a=b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) # define FP_TO_INT(a,b)	fcvt.fxu.trunc.s1 a=b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) # define SGN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) # define INT_TO_FP(a,b)	fcvt.xf a=b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) # define FP_TO_INT(a,b)	fcvt.fx.trunc.s1 a=b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define PASTE1(a,b)	a##b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define PASTE(a,b)	PASTE1(a,b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define NAME		PASTE(PASTE(__,SGN),PASTE(OP,di3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) GLOBAL_ENTRY(NAME)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) 	.regstk 2,0,0,0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) 	// Transfer inputs to FP registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) 	setf.sig f8 = in0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) 	setf.sig f9 = in1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) 	// Convert the inputs to FP, to avoid FP software-assist faults.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) 	INT_TO_FP(f8, f8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) 	INT_TO_FP(f9, f9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) 	frcpa.s1 f11, p6 = f8, f9	// y0 = frcpa(b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) (p6)	fmpy.s1 f7 = f8, f11		// q0 = a*y0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) (p6)	fnma.s1 f6 = f9, f11, f1	// e0 = -b*y0 + 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) (p6)	fma.s1 f10 = f7, f6, f7		// q1 = q0*e0 + q0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) (p6)	fmpy.s1 f7 = f6, f6		// e1 = e0*e0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #ifdef MODULO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) 	sub in1 = r0, in1		// in1 = -b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) (p6)	fma.s1 f10 = f10, f7, f10	// q2 = q1*e1 + q1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) (p6)	fma.s1 f6 = f11, f6, f11	// y1 = y0*e0 + y0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) (p6)	fma.s1 f6 = f6, f7, f6		// y2 = y1*e1 + y1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) (p6)	fnma.s1 f7 = f9, f10, f8	// r = -b*q2 + a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #ifdef MODULO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) 	setf.sig f8 = in0		// f8 = a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) 	setf.sig f9 = in1		// f9 = -b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) (p6)	fma.s1 f11 = f7, f6, f10	// q3 = r*y2 + q2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) 	FP_TO_INT(f11, f11)		// q = trunc(q3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) #ifdef MODULO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) 	xma.l f11 = f11, f9, f8		// r = q*(-b) + a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) 	getf.sig r8 = f11		// transfer result to result register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) 	br.ret.sptk.many rp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) END(NAME)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) EXPORT_SYMBOL(NAME)