Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Optimized version of the copy_user() routine.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * It is used to copy date across the kernel/user boundary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * The source and destination are always on opposite side of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * the boundary. When reading from user space we must catch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * faults on loads. When writing to user space we must catch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * errors on stores. Note that because of the nature of the copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * we don't need to worry about overlapping regions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * Inputs:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  *	in0	address of source buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *	in1	address of destination buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  *	in2	number of bytes to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * Outputs:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  *	ret0	0 in case of success. The number of bytes NOT copied in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  *		case of error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * Copyright (C) 2000-2001 Hewlett-Packard Co
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  *	Stephane Eranian <eranian@hpl.hp.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * Fixme:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  *	- handle the case where we have more than 16 bytes and the alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *	  are different.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  *	- more benchmarking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  *	- fix extraneous stop bit introduced by the EX() macro.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #include <asm/asmmacro.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #include <asm/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) // Tuneable parameters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define COPY_BREAK	16	// we do byte copy below (must be >=16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define PIPE_DEPTH	21	// pipe depth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define EPI		p[PIPE_DEPTH-1]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) // arguments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define dst		in0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define src		in1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define len		in2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) // local registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define t1		r2	// rshift in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define t2		r3	// lshift in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define rshift		r14	// right shift in bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define lshift		r15	// left shift in bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define word1		r16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define word2		r17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define cnt		r18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define len2		r19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define saved_lc	r20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define saved_pr	r21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define tmp		r22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define val		r23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) #define src1		r24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define dst1		r25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define src2		r26
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) #define dst2		r27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define len1		r28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define enddst		r29
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define endsrc		r30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define saved_pfs	r31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) GLOBAL_ENTRY(__copy_user)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	.prologue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	.save ar.pfs, saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	.rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	.rotp p[PIPE_DEPTH]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	adds len2=-1,len	// br.ctop is repeat/until
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	mov ret0=r0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	;;			// RAW of cfm when len=0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	cmp.eq p8,p0=r0,len	// check for zero length
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	.save ar.lc, saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	mov saved_lc=ar.lc	// preserve ar.lc (slow)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) (p8)	br.ret.spnt.many rp	// empty mempcy()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	add enddst=dst,len	// first byte after end of source
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	add endsrc=src,len	// first byte after end of destination
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	.save pr, saved_pr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	mov saved_pr=pr		// preserve predicates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	.body
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	mov dst1=dst		// copy because of rotation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	mov ar.ec=PIPE_DEPTH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	mov pr.rot=1<<16	// p16=true all others are false
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	mov src1=src		// copy because of rotation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	mov ar.lc=len2		// initialize lc for small count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	xor tmp=src,dst		// same alignment test prepare
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) (p10)	br.cond.dptk .long_copy_user
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	;;			// RAW pr.rot/p16 ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	// Now we do the byte by byte loop with software pipeline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	// p7 is necessarily false by now
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	br.ctop.dptk.few 1b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	mov ar.lc=saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	mov ar.pfs=saved_pfs		// restore ar.ec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	br.ret.sptk.many rp		// end of short memcpy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	// Not 8-byte aligned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) .diff_align_copy_user:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	// At this point we know we have more than 16 bytes to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	// and also that src and dest do _not_ have the same alignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	and src2=0x7,src1				// src offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	and dst2=0x7,dst1				// dst offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	// The basic idea is that we copy byte-by-byte at the head so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	// that we can reach 8-byte alignment for both src1 and dst1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	// Then copy the body using software pipelined 8-byte copy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	// shifting the two back-to-back words right and left, then copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	// the tail by copying byte-by-byte.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	// Fault handling. If the byte-by-byte at the head fails on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	// load, then restart and finish the pipleline by copying zeros
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	// to the dst1. Then copy zeros for the rest of dst1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	// If 8-byte software pipeline fails on the load, do the same as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	// failure_in3 does. If the byte-by-byte at the tail fails, it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	// handled simply by failure_in_pipe1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	// The case p14 represents the source has more bytes in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	// the first word (by the shifted part), whereas the p15 needs to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	// copy some bytes from the 2nd word of the source that has the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	// tail of the 1st of the destination.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	// Optimization. If dst1 is 8-byte aligned (quite common), we don't need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	// to copy the head to dst1, to start 8-byte copy software pipeline.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	// We know src1 is not 8-byte aligned in this case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	cmp.eq p14,p15=r0,dst2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) (p15)	br.cond.spnt 1f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	sub t1=8,src2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	mov t2=src2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	shl rshift=t2,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	sub len1=len,t1					// set len1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	sub lshift=64,rshift
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	br.cond.spnt .word_copy_user
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	cmp.leu	p14,p15=src2,dst2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	sub t1=dst2,src2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	.pred.rel "mutex", p14, p15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) (p14)	sub word1=8,src2				// (8 - src offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) (p15)	sub t1=r0,t1					// absolute value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) (p15)	sub word1=8,dst2				// (8 - dst offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	// For the case p14, we don't need to copy the shifted part to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	// the 1st word of destination.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	sub t2=8,t1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) (p14)	sub word1=word1,t1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	sub len1=len,word1				// resulting len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) (p15)	shl rshift=t1,3					// in bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) (p14)	shl rshift=t2,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) (p14)	sub len1=len1,t1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	adds cnt=-1,word1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	sub lshift=64,rshift
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	mov ar.ec=PIPE_DEPTH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	mov pr.rot=1<<16	// p16=true all others are false
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	mov ar.lc=cnt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	br.ctop.dptk.few 2b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	clrrrb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) .word_copy_user:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	cmp.gtu p9,p0=16,len1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) (p9)	br.cond.spnt 4f			// if (16 > len1) skip 8-byte copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	shr.u cnt=len1,3		// number of 64-bit words
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	adds cnt=-1,cnt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	.pred.rel "mutex", p14, p15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) (p14)	sub src1=src1,t2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) (p15)	sub src1=src1,t1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	// Now both src1 and dst1 point to an 8-byte aligned address. And
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	// we have more than 8 bytes to copy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	mov ar.lc=cnt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	mov ar.ec=PIPE_DEPTH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	mov pr.rot=1<<16	// p16=true all others are false
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	// The pipleline consists of 3 stages:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	// 1 (p16):	Load a word from src1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	// 2 (EPI_1):	Shift right pair, saving to tmp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	// 3 (EPI):	Store tmp to dst1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	// To make it simple, use at least 2 (p16) loops to set up val1[n]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	// because we need 2 back-to-back val1[] to get tmp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	// Note that this implies EPI_2 must be p18 or greater.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) #define EPI_1		p[PIPE_DEPTH-2]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) #define SWITCH(pred, shift)	cmp.eq pred,p0=shift,rshift
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) #define CASE(pred, shift)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	(pred)	br.cond.spnt .copy_user_bit##shift
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) #define BODY(rshift)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) .copy_user_bit##rshift:						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 1:								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	EX(.failure_out,(EPI) st8 [dst1]=tmp,8);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	EX(3f,(p16) ld8 val1[1]=[src1],8);			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) (p16)	mov val1[0]=r0;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	br.ctop.dptk 1b;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	;;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	br.cond.sptk.many .diff_align_do_tail;			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 2:								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) (EPI)	st8 [dst1]=tmp,8;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) (EPI_1)	shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 3:								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) (p16)	mov val1[1]=r0;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) (p16)	mov val1[0]=r0;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	br.ctop.dptk 2b;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	;;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	br.cond.sptk.many .failure_in2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	// Since the instruction 'shrp' requires a fixed 128-bit value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	// specifying the bits to shift, we need to provide 7 cases
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	// below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	SWITCH(p6, 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	SWITCH(p7, 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	SWITCH(p8, 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	SWITCH(p9, 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	SWITCH(p10, 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	SWITCH(p11, 48)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	SWITCH(p12, 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	CASE(p6, 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	CASE(p7, 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	CASE(p8, 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	CASE(p9, 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	CASE(p10, 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	CASE(p11, 48)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	CASE(p12, 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	BODY(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	BODY(16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	BODY(24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	BODY(32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	BODY(40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	BODY(48)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	BODY(56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) .diff_align_do_tail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	.pred.rel "mutex", p14, p15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) (p14)	sub src1=src1,t1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) (p14)	adds dst1=-8,dst1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) (p15)	sub dst1=dst1,t1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	// Tail correction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	// The problem with this piplelined loop is that the last word is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	// loaded and thus parf of the last word written is not correct.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	// To fix that, we simply copy the tail byte by byte.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	sub len1=endsrc,src1,1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	clrrrb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	mov ar.ec=PIPE_DEPTH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	mov pr.rot=1<<16	// p16=true all others are false
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	mov ar.lc=len1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	br.ctop.dptk.few 5b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	mov ar.lc=saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	mov ar.pfs=saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	br.ret.sptk.many rp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	// Beginning of long mempcy (i.e. > 16 bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) .long_copy_user:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	tbit.nz p6,p7=src1,0	// odd alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	and tmp=7,tmp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	cmp.eq p10,p8=r0,tmp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	mov len1=len		// copy because of rotation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) (p8)	br.cond.dpnt .diff_align_copy_user
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	// At this point we know we have more than 16 bytes to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	// and also that both src and dest have the same alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	// which may not be the one we want. So for now we must move
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	// forward slowly until we reach 16byte alignment: no need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	// worry about reaching the end of buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) (p6)	adds len1=-1,len1;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	tbit.nz p7,p0=src1,1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) (p7)	adds len1=-2,len1;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	tbit.nz p8,p0=src1,2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	// Stop bit not required after ld4 because if we fail on ld4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	// we have never executed the ld1, therefore st1 is not executed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	tbit.nz p9,p0=src1,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	// Stop bit not required after ld8 because if we fail on ld8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	// we have never executed the ld2, therefore st2 is not executed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) (p8)	adds len1=-4,len1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) (p9)	adds len1=-8,len1;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	shr.u cnt=len1,4		// number of 128-bit (2x64bit) words
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	tbit.nz p6,p0=len1,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	cmp.eq p7,p0=r0,cnt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	adds tmp=-1,cnt			// br.ctop is repeat/until
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) (p7)	br.cond.dpnt .dotail		// we have less than 16 bytes left
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	adds src2=8,src1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	adds dst2=8,dst1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	mov ar.lc=tmp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	// 16bytes/iteration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) (p16)	ld8 val2[0]=[src2],16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	EX(.failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	br.ctop.dptk 2b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	;;			// RAW on src1 when fall through from loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	// Tail correction based on len only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	// No matter where we come from (loop or test) the src1 pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	// is 16 byte aligned AND we have less than 16 bytes to copy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) .dotail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	tbit.nz p7,p0=len1,2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	tbit.nz p8,p0=len1,1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	tbit.nz p9,p0=len1,0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	EX(.failure_in1,(p9) ld1 val2[1]=[src1])	// only 1 byte left
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	mov ar.lc=saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	EX(.failure_out, (p8)	st2 [dst1]=val2[0],2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	mov ar.pfs=saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	EX(.failure_out, (p9)	st1 [dst1]=val2[1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	br.ret.sptk.many rp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	// Here we handle the case where the byte by byte copy fails
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	// on the load.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	// Several factors make the zeroing of the rest of the buffer kind of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	// tricky:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	//	- the pipeline: loads/stores are not in sync (pipeline)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	//	  In the same loop iteration, the dst1 pointer does not directly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	//	  reflect where the faulty load was.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	//	- pipeline effect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	//	  When you get a fault on load, you may have valid data from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	//	  previous loads not yet store in transit. Such data must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	//	  store normally before moving onto zeroing the rest.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	//	- single/multi dispersal independence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	// solution:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	//	- we don't disrupt the pipeline, i.e. data in transit in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	//	  the software pipeline will be eventually move to memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	//	  We simply replace the load with a simple mov and keep the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	//	  pipeline going. We can't really do this inline because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	//	  p16 is always reset to 1 when lc > 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) .failure_in_pipe1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) (p16)	mov val1[0]=r0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	br.ctop.dptk 1b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	mov ar.lc=saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	mov ar.pfs=saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	br.ret.sptk.many rp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	// This is the case where the byte by byte copy fails on the load
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	// when we copy the head. We need to finish the pipeline and copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	// zeros for the rest of the destination. Since this happens
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	// at the top we still need to fill the body and tail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) .failure_in_pipe2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) (p16)	mov val1[0]=r0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	br.ctop.dptk 2b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	sub len=enddst,dst1,1		// precompute len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	br.cond.dptk.many .failure_in1bis
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	// Here we handle the head & tail part when we check for alignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	// The following code handles only the load failures. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	// main diffculty comes from the fact that loads/stores are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	// scheduled. So when you fail on a load, the stores corresponding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	// to previous successful loads must be executed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	// However some simplifications are possible given the way
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	// things work.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	// 1) HEAD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	// Theory of operation:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	//  Page A   | Page B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	//  ---------|-----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	//          1|8 x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	//	  1 2|8 x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	//	    4|8 x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	//	  1 4|8 x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	//        2 4|8 x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	//      1 2 4|8 x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	//	     |1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 	//	     |2 x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	//	     |4 x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	// page_size >= 4k (2^12).  (x means 4, 2, 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	// Here we suppose Page A exists and Page B does not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	// As we move towards eight byte alignment we may encounter faults.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	// The numbers on each page show the size of the load (current alignment).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	// Key point:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	//	- if you fail on 1, 2, 4 then you have never executed any smaller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	//	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	//	  before.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	// This allows us to simplify the cleanup code, because basically you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	// only have to worry about "pending" stores in the case of a failing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	// ld8(). Given the way the code is written today, this means only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	// worry about st2, st4. There we can use the information encapsulated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	// into the predicates.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	// Other key point:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	//	- if you fail on the ld8 in the head, it means you went straight
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	//	  to it, i.e. 8byte alignment within an unexisting page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 	// Again this comes from the fact that if you crossed just for the ld8 then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	// you are 8byte aligned but also 16byte align, therefore you would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	// either go for the 16byte copy loop OR the ld8 in the tail part.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	// The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	// because it would mean you had 15bytes to copy in which case you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	// would have defaulted to the byte by byte copy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	// 2) TAIL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	// Here we now we have less than 16 bytes AND we are either 8 or 16 byte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	// aligned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	// Key point:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	// This means that we either:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	//		- are right on a page boundary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	//	OR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	//		- are at more than 16 bytes from a page boundary with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	//		  at most 15 bytes to copy: no chance of crossing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	// This allows us to assume that if we fail on a load we haven't possibly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	// executed any of the previous (tail) ones, so we don't need to do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	// any stores. For instance, if we fail on ld2, this means we had
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	// 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	// This means that we are in a situation similar the a fault in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	// head part. That's nice!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) .failure_in1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	sub len=endsrc,src1,1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	// we know that ret0 can never be zero at this point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	// because we failed why trying to do a load, i.e. there is still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	// some work to do.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	// The failure_in1bis and length problem is taken care of at the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 	// calling side.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) .failure_in1bis:		// from (.failure_in3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	mov ar.lc=len		// Continue with a stupid byte store.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	st1 [dst1]=r0,1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	br.cloop.dptk 5b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	mov ar.lc=saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	mov ar.pfs=saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	br.ret.sptk.many rp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	// Here we simply restart the loop but instead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	// of doing loads we fill the pipeline with zeroes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	// We can't simply store r0 because we may have valid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	// data in transit in the pipeline.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	// ar.lc and ar.ec are setup correctly at this point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	// we MUST use src1/endsrc here and not dst1/enddst because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	// of the pipeline effect.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) .failure_in3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) (p16)	mov val1[0]=r0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) (p16)	mov val2[0]=r0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	br.ctop.dptk 2b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	sub len=enddst,dst1,1		// precompute len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) (p6)	br.cond.dptk .failure_in1bis
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	mov ar.lc=saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	mov ar.pfs=saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	br.ret.sptk.many rp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) .failure_in2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 	sub ret0=endsrc,src1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	sub len=enddst,dst1,1		// precompute len
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) (p6)	br.cond.dptk .failure_in1bis
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	;;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	mov ar.lc=saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	mov ar.pfs=saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	br.ret.sptk.many rp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	// handling of failures on stores: that's the easy part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	//
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) .failure_out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	sub ret0=enddst,dst1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	mov pr=saved_pr,0xffffffffffff0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	mov ar.lc=saved_lc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	mov ar.pfs=saved_pfs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	br.ret.sptk.many rp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) END(__copy_user)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) EXPORT_SYMBOL(__copy_user)