^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * linux/arch/ia64/kernel/time.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 1998-2003 Hewlett-Packard Co
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Stephane Eranian <eranian@hpl.hp.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * David Mosberger <davidm@hpl.hp.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * Copyright (C) 1999-2000 VA Linux Systems
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/profile.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/nmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/efi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/timex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/timekeeper_internal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <linux/sched/cputime.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <asm/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <asm/hw_irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <asm/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <asm/sal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <asm/sections.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include "fsyscall_gtod_data.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #include "irq.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) static u64 itc_get_cycles(struct clocksource *cs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) struct fsyscall_gtod_data_t fsyscall_gtod_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) struct itc_jitter_data_t itc_jitter_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #ifdef CONFIG_IA64_DEBUG_IRQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) unsigned long last_cli_ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) EXPORT_SYMBOL(last_cli_ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) static struct clocksource clocksource_itc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) .name = "itc",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) .rating = 350,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) .read = itc_get_cycles,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) .mask = CLOCKSOURCE_MASK(64),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) .flags = CLOCK_SOURCE_IS_CONTINUOUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) static struct clocksource *itc_clocksource;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #include <linux/kernel_stat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) extern u64 cycle_to_nsec(u64 cyc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) void vtime_flush(struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) struct thread_info *ti = task_thread_info(tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) u64 delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) if (ti->utime)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) account_user_time(tsk, cycle_to_nsec(ti->utime));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) if (ti->gtime)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) account_guest_time(tsk, cycle_to_nsec(ti->gtime));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) if (ti->idle_time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) account_idle_time(cycle_to_nsec(ti->idle_time));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) if (ti->stime) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) delta = cycle_to_nsec(ti->stime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) if (ti->hardirq_time) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) delta = cycle_to_nsec(ti->hardirq_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) account_system_index_time(tsk, delta, CPUTIME_IRQ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) if (ti->softirq_time) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) delta = cycle_to_nsec(ti->softirq_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) ti->utime = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) ti->gtime = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) ti->idle_time = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) ti->stime = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) ti->hardirq_time = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) ti->softirq_time = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) * Called from the context switch with interrupts disabled, to charge all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) * accumulated times to the current process, and to prepare accounting on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) * the next process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) void arch_vtime_task_switch(struct task_struct *prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) struct thread_info *pi = task_thread_info(prev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) struct thread_info *ni = task_thread_info(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) ni->ac_stamp = pi->ac_stamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) ni->ac_stime = ni->ac_utime = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) * Account time for a transition between system, hard irq or soft irq state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * Note that this function is called with interrupts enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) static __u64 vtime_delta(struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) struct thread_info *ti = task_thread_info(tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) __u64 now, delta_stime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) WARN_ON_ONCE(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) now = ia64_get_itc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) delta_stime = now - ti->ac_stamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) ti->ac_stamp = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) return delta_stime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) void vtime_account_kernel(struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) struct thread_info *ti = task_thread_info(tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) __u64 stime = vtime_delta(tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) if ((tsk->flags & PF_VCPU) && !irq_count())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) ti->gtime += stime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) else if (hardirq_count())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) ti->hardirq_time += stime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) else if (in_serving_softirq())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) ti->softirq_time += stime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) ti->stime += stime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) EXPORT_SYMBOL_GPL(vtime_account_kernel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) void vtime_account_idle(struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) struct thread_info *ti = task_thread_info(tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) ti->idle_time += vtime_delta(tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) static irqreturn_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) timer_interrupt (int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) unsigned long new_itm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) if (cpu_is_offline(smp_processor_id())) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) new_itm = local_cpu_data->itm_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) if (!time_after(ia64_get_itc(), new_itm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) ia64_get_itc(), new_itm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) profile_tick(CPU_PROFILING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) update_process_times(user_mode(get_irq_regs()));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) new_itm += local_cpu_data->itm_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) if (smp_processor_id() == time_keeper_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) xtime_update(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) local_cpu_data->itm_next = new_itm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) if (time_after(new_itm, ia64_get_itc()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) * Allow IPIs to interrupt the timer loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) * If we're too close to the next clock tick for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) * comfort, we increase the safety margin by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * intentionally dropping the next tick(s). We do NOT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * update itm.next because that would force us to call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) * xtime_update() which in turn would let our clock run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) * too fast (with the potentially devastating effect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) * of losing monotony of time).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) new_itm += local_cpu_data->itm_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) ia64_set_itm(new_itm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) /* double check, in case we got hit by a (slow) PMI: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) } while (time_after_eq(ia64_get_itc(), new_itm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) * Encapsulate access to the itm structure for SMP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) ia64_cpu_local_tick (void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) unsigned long shift = 0, delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) /* arrange for the cycle counter to generate a timer interrupt: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) ia64_set_itv(IA64_TIMER_VECTOR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) delta = local_cpu_data->itm_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) * Stagger the timer tick for each CPU so they don't occur all at (almost) the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) * same time:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) if (cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) unsigned long hi = 1UL << ia64_fls(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) shift = (2*(cpu - hi) + 1) * delta/hi/2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) ia64_set_itm(local_cpu_data->itm_next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) static int nojitter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static int __init nojitter_setup(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) nojitter = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) printk("Jitter checking for ITC timers disabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) __setup("nojitter", nojitter_setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) void ia64_init_itm(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) unsigned long platform_base_freq, itc_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) struct pal_freq_ratio itc_ratio, proc_ratio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) long status, platform_base_drift, itc_drift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) * According to SAL v2.6, we need to use a SAL call to determine the platform base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) * frequency and then a PAL call to determine the frequency ratio between the ITC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) * and the base frequency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) &platform_base_freq, &platform_base_drift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) if (status != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) if (status != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) if (status != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) /* invent "random" values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) printk(KERN_ERR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) platform_base_freq = 100000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) platform_base_drift = -1; /* no drift info */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) itc_ratio.num = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) itc_ratio.den = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) if (platform_base_freq < 40000000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) platform_base_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) platform_base_freq = 75000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) platform_base_drift = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) if (!proc_ratio.den)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) proc_ratio.den = 1; /* avoid division by zero */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) if (!itc_ratio.den)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) itc_ratio.den = 1; /* avoid division by zero */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) "ITC freq=%lu.%03luMHz", smp_processor_id(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) if (platform_base_drift != -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) printk("+/-%ldppm\n", itc_drift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) itc_drift = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) printk("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) local_cpu_data->itc_freq = itc_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) + itc_freq/2)/itc_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) * Jitter compensation requires a cmpxchg which may limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) * the scalability of the syscalls for retrieving time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) * The ITC synchronization is usually successful to within a few
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) * ITC ticks but this is not a sure thing. If you need to improve
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) * timer performance in SMP situations then boot the kernel with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) * "nojitter" option. However, doing so may result in time fluctuating (maybe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) * even going backward) if the ITC offsets between the individual CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) * are too large.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) if (!nojitter)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) itc_jitter_data.itc_jitter = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) * ITC values may fluctuate significantly between processors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) * Clock should not be used for hrtimers. Mark itc as only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) * useful for boot and testing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) * Note that jitter compensation is off! There is no point of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) * synchronizing ITCs since they may be large differentials
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) * that change over time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) * The only way to fix this would be to repeatedly sync the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) * ITCs. Until that time we have to avoid ITC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) clocksource_itc.rating = 50;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) /* avoid softlock up message when cpu is unplug and plugged again. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) touch_softlockup_watchdog();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) /* Setup the CPU local timer tick */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) ia64_cpu_local_tick();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) if (!itc_clocksource) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) clocksource_register_hz(&clocksource_itc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) local_cpu_data->itc_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) itc_clocksource = &clocksource_itc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) static u64 itc_get_cycles(struct clocksource *cs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) unsigned long lcycle, now, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) if (!itc_jitter_data.itc_jitter)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) return get_cycles();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) lcycle = itc_jitter_data.itc_lastcycle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) now = get_cycles();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) if (lcycle && time_after(lcycle, now))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) return lcycle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) * Keep track of the last timer value returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) * In an SMP environment, you could lose out in contention of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) * cmpxchg. If so, your cmpxchg returns new value which the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) * winner of contention updated to. Use the new value instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) if (unlikely(ret != lcycle))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) return now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) void read_persistent_clock64(struct timespec64 *ts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) efi_gettimeofday(ts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) void __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) time_init (void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) "timer");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) ia64_init_itm();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) * Generic udelay assumes that if preemption is allowed and the thread
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) * migrates to another CPU, that the ITC values are synchronized across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) * all CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) ia64_itc_udelay (unsigned long usecs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) unsigned long start = ia64_get_itc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) while (time_before(ia64_get_itc(), end))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) udelay (unsigned long usecs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) (*ia64_udelay)(usecs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) EXPORT_SYMBOL(udelay);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) /* IA64 doesn't cache the timezone */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) void update_vsyscall_tz(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) void update_vsyscall(struct timekeeper *tk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) write_seqcount_begin(&fsyscall_gtod_data.seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) /* copy vsyscall data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) + tk->wall_to_monotonic.tv_sec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) + ((u64)tk->wall_to_monotonic.tv_nsec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) << tk->tkr_mono.shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) /* normalize */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) while (fsyscall_gtod_data.monotonic_time.snsec >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) fsyscall_gtod_data.monotonic_time.snsec -=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) fsyscall_gtod_data.monotonic_time.sec++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) write_seqcount_end(&fsyscall_gtod_data.seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456)