Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) #ifndef _ASM_IA64_BITOPS_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) #define _ASM_IA64_BITOPS_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 1998-2003 Hewlett-Packard Co
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *	David Mosberger-Tang <davidm@hpl.hp.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * O(1) scheduler patch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #ifndef _LINUX_BITOPS_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #error only <linux/bitops.h> can be included directly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/compiler.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <asm/intrinsics.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <asm/barrier.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * set_bit - Atomically set a bit in memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * @nr: the bit to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * @addr: the address to start counting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * This function is atomic and may not be reordered.  See __set_bit()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  * if you do not require the atomic guarantees.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * Note that @nr may be almost arbitrarily large; this function is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * restricted to acting on a single-word quantity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * The address must be (at least) "long" aligned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * Note that there are driver (e.g., eepro100) which use these operations to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * operate on hw-defined data-structures, so we can't easily change these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * operations to force a bigger alignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) static __inline__ void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) set_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	__u32 bit, old, new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	volatile __u32 *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	CMPXCHG_BUGCHECK_DECL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	m = (volatile __u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	bit = 1 << (nr & 31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 		CMPXCHG_BUGCHECK(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 		old = *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 		new = old | bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	} while (cmpxchg_acq(m, old, new) != old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  * __set_bit - Set a bit in memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * @nr: the bit to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  * @addr: the address to start counting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  * Unlike set_bit(), this function is non-atomic and may be reordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  * If it's called on the same region of memory simultaneously, the effect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  * may be that only one operation succeeds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) static __inline__ void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) __set_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  * clear_bit - Clears a bit in memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  * @nr: Bit to clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * @addr: Address to start counting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  * clear_bit() is atomic and may not be reordered.  However, it does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  * not contain a memory barrier, so if it is used for locking purposes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * in order to ensure changes are visible on other processors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) static __inline__ void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) clear_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	__u32 mask, old, new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	volatile __u32 *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	CMPXCHG_BUGCHECK_DECL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	m = (volatile __u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	mask = ~(1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 		CMPXCHG_BUGCHECK(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 		old = *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 		new = old & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	} while (cmpxchg_acq(m, old, new) != old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  * clear_bit_unlock - Clears a bit in memory with release
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  * @nr: Bit to clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  * @addr: Address to start counting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)  * clear_bit_unlock() is atomic and may not be reordered.  It does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)  * contain a memory barrier suitable for unlock type operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) static __inline__ void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) clear_bit_unlock (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	__u32 mask, old, new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	volatile __u32 *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	CMPXCHG_BUGCHECK_DECL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	m = (volatile __u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	mask = ~(1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 		CMPXCHG_BUGCHECK(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 		old = *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		new = old & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	} while (cmpxchg_rel(m, old, new) != old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  * __clear_bit_unlock - Non-atomically clears a bit in memory with release
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)  * @nr: Bit to clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)  * @addr: Address to start counting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)  * Similarly to clear_bit_unlock, the implementation uses a store
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)  * with release semantics. See also arch_spin_unlock().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) static __inline__ void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) __clear_bit_unlock(int nr, void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	__u32 * const m = (__u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	__u32 const new = *m & ~(1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	ia64_st4_rel_nta(m, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)  * __clear_bit - Clears a bit in memory (non-atomic version)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)  * @nr: the bit to clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)  * @addr: the address to start counting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)  * Unlike clear_bit(), this function is non-atomic and may be reordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)  * If it's called on the same region of memory simultaneously, the effect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)  * may be that only one operation succeeds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) static __inline__ void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) __clear_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	*((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  * change_bit - Toggle a bit in memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * @nr: Bit to toggle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  * @addr: Address to start counting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  * change_bit() is atomic and may not be reordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  * Note that @nr may be almost arbitrarily large; this function is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)  * restricted to acting on a single-word quantity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) static __inline__ void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) change_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	__u32 bit, old, new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	volatile __u32 *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	CMPXCHG_BUGCHECK_DECL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	m = (volatile __u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	bit = (1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		CMPXCHG_BUGCHECK(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		old = *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		new = old ^ bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	} while (cmpxchg_acq(m, old, new) != old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)  * __change_bit - Toggle a bit in memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)  * @nr: the bit to toggle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)  * @addr: the address to start counting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)  * Unlike change_bit(), this function is non-atomic and may be reordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)  * If it's called on the same region of memory simultaneously, the effect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)  * may be that only one operation succeeds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) static __inline__ void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) __change_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)  * test_and_set_bit - Set a bit and return its old value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)  * @nr: Bit to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)  * @addr: Address to count from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)  * This operation is atomic and cannot be reordered.  
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)  * It also implies the acquisition side of the memory barrier.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) static __inline__ int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) test_and_set_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	__u32 bit, old, new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	volatile __u32 *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	CMPXCHG_BUGCHECK_DECL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	m = (volatile __u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	bit = 1 << (nr & 31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		CMPXCHG_BUGCHECK(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		old = *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 		new = old | bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	} while (cmpxchg_acq(m, old, new) != old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	return (old & bit) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)  * test_and_set_bit_lock - Set a bit and return its old value for lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)  * @nr: Bit to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)  * @addr: Address to count from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)  * This is the same as test_and_set_bit on ia64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) #define test_and_set_bit_lock test_and_set_bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)  * __test_and_set_bit - Set a bit and return its old value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)  * @nr: Bit to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)  * @addr: Address to count from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)  * This operation is non-atomic and can be reordered.  
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)  * If two examples of this operation race, one can appear to succeed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)  * but actually fail.  You must protect multiple accesses with a lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) static __inline__ int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) __test_and_set_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	__u32 *p = (__u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	__u32 m = 1 << (nr & 31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	int oldbitset = (*p & m) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	*p |= m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	return oldbitset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)  * test_and_clear_bit - Clear a bit and return its old value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)  * @nr: Bit to clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)  * @addr: Address to count from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)  * This operation is atomic and cannot be reordered.  
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)  * It also implies the acquisition side of the memory barrier.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) static __inline__ int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) test_and_clear_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	__u32 mask, old, new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	volatile __u32 *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	CMPXCHG_BUGCHECK_DECL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	m = (volatile __u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	mask = ~(1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 		CMPXCHG_BUGCHECK(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 		old = *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 		new = old & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	} while (cmpxchg_acq(m, old, new) != old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	return (old & ~mask) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)  * __test_and_clear_bit - Clear a bit and return its old value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)  * @nr: Bit to clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)  * @addr: Address to count from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)  * This operation is non-atomic and can be reordered.  
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)  * If two examples of this operation race, one can appear to succeed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)  * but actually fail.  You must protect multiple accesses with a lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) static __inline__ int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) __test_and_clear_bit(int nr, volatile void * addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	__u32 *p = (__u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	__u32 m = 1 << (nr & 31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	int oldbitset = (*p & m) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	*p &= ~m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	return oldbitset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)  * test_and_change_bit - Change a bit and return its old value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)  * @nr: Bit to change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294)  * @addr: Address to count from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)  * This operation is atomic and cannot be reordered.  
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)  * It also implies the acquisition side of the memory barrier.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) static __inline__ int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) test_and_change_bit (int nr, volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	__u32 bit, old, new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	volatile __u32 *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	CMPXCHG_BUGCHECK_DECL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	m = (volatile __u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	bit = (1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		CMPXCHG_BUGCHECK(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 		old = *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		new = old ^ bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	} while (cmpxchg_acq(m, old, new) != old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	return (old & bit) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)  * __test_and_change_bit - Change a bit and return its old value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)  * @nr: Bit to change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)  * @addr: Address to count from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)  * This operation is non-atomic and can be reordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) static __inline__ int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) __test_and_change_bit (int nr, void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	__u32 old, bit = (1 << (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	__u32 *m = (__u32 *) addr + (nr >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	old = *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	*m = old ^ bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	return (old & bit) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) static __inline__ int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) test_bit (int nr, const volatile void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)  * ffz - find the first zero bit in a long word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)  * @x: The long word to find the bit in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)  * Returns the bit-number (0..63) of the first (least significant) zero bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)  * Undefined if no zero exists, so code should check against ~0UL first...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) static inline unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) ffz (unsigned long x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	unsigned long result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	result = ia64_popcnt(x & (~x - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	return result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357)  * __ffs - find first bit in word.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)  * @x: The word to search
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360)  * Undefined if no bit exists, so code should check against 0 first.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) static __inline__ unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) __ffs (unsigned long x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	unsigned long result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	result = ia64_popcnt((x-1) & ~x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	return result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) #ifdef __KERNEL__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)  * Return bit number of last (most-significant) bit set.  Undefined
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)  * for x==0.  Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) static inline unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) ia64_fls (unsigned long x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	long double d = x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	long exp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	exp = ia64_getf_exp(d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	return exp - 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388)  * Find the last (most significant) bit set.  Returns 0 for x==0 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389)  * bits are numbered from 1..32 (e.g., fls(9) == 4).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) static inline int fls(unsigned int t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	unsigned long x = t & 0xffffffffu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	if (!x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	x |= x >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	x |= x >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	x |= x >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	x |= x >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	x |= x >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	return ia64_popcnt(x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)  * Find the last (most significant) bit set.  Undefined for x==0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407)  * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) static inline unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) __fls (unsigned long x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	x |= x >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	x |= x >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	x |= x >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	x |= x >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	x |= x >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	x |= x >> 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	return ia64_popcnt(x) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) #include <asm-generic/bitops/fls64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) #include <asm-generic/bitops/builtin-ffs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)  * hweightN: returns the hamming weight (i.e. the number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)  * of bits set) of a N-bit word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) static __inline__ unsigned long __arch_hweight64(unsigned long x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	unsigned long result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	result = ia64_popcnt(x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	return result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) #define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) #define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) #define __arch_hweight8(x)  ((unsigned int) __arch_hweight64((x) & 0xfful))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) #include <asm-generic/bitops/const_hweight.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) #endif /* __KERNEL__ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) #include <asm-generic/bitops/find.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) #ifdef __KERNEL__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) #include <asm-generic/bitops/le.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) #include <asm-generic/bitops/ext2-atomic-setbit.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) #include <asm-generic/bitops/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) #endif /* __KERNEL__ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) #endif /* _ASM_IA64_BITOPS_H */