Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0-only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (C) 2013 ARM Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Copyright (C) 2013 Linaro.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * This code is based on glibc cortex strings work originally authored by Linaro
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * be found @
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * files/head:/src/aarch64/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/linkage.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <asm/assembler.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * determine the length of a fixed-size string
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * Parameters:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  *	x0 - const string pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  *	x1 - maximal string length
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * Returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  *	x0 - the return length of specific string
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) /* Arguments and results.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) srcin		.req	x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) len		.req	x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) limit		.req	x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) /* Locals and temporaries.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) src		.req	x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) data1		.req	x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) data2		.req	x4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) data2a		.req	x5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) has_nul1	.req	x6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) has_nul2	.req	x7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) tmp1		.req	x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) tmp2		.req	x9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) tmp3		.req	x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) tmp4		.req	x11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) zeroones	.req	x12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) pos		.req	x13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) limit_wd	.req	x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define REP8_01 0x0101010101010101
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define REP8_7f 0x7f7f7f7f7f7f7f7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define REP8_80 0x8080808080808080
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) SYM_FUNC_START_WEAK_PI(strnlen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	cbz	limit, .Lhit_limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	mov	zeroones, #REP8_01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	bic	src, srcin, #15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	ands	tmp1, srcin, #15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	b.ne	.Lmisaligned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	/* Calculate the number of full and partial words -1.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	sub	limit_wd, limit, #1 /* Limit != 0, so no underflow.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	lsr	limit_wd, limit_wd, #4  /* Convert to Qwords.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	* NUL detection works on the principle that (X - 1) & (~X) & 0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	* can be done in parallel across the entire word.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	* The inner loop deals with two Dwords at a time.  This has a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	* slightly higher start-up cost, but we should win quite quickly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	* especially on cores with a high number of issue slots per
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	* cycle, as we get much better parallelism out of the operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) .Lloop:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	ldp	data1, data2, [src], #16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) .Lrealigned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	sub	tmp1, data1, zeroones
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	orr	tmp2, data1, #REP8_7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	sub	tmp3, data2, zeroones
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	orr	tmp4, data2, #REP8_7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	bic	has_nul1, tmp1, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	bic	has_nul2, tmp3, tmp4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	subs	limit_wd, limit_wd, #1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	orr	tmp1, has_nul1, has_nul2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	ccmp	tmp1, #0, #0, pl    /* NZCV = 0000  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	b.eq	.Lloop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	cbz	tmp1, .Lhit_limit   /* No null in final Qword.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	* We know there's a null in the final Qword. The easiest thing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	* to do now is work out the length of the string and return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	* MIN (len, limit).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	sub	len, src, srcin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	cbz	has_nul1, .Lnul_in_data2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) CPU_BE( mov	data2, data1 )	/*perpare data to re-calculate the syndrome*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	sub	len, len, #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	mov	has_nul2, has_nul1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) .Lnul_in_data2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	* For big-endian, carry propagation (if the final byte in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	* string is 0x01) means we cannot use has_nul directly.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	* easiest way to get the correct byte is to byte-swap the data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	* and calculate the syndrome a second time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) CPU_BE( rev	data2, data2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) CPU_BE( sub	tmp1, data2, zeroones )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) CPU_BE( orr	tmp2, data2, #REP8_7f )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) CPU_BE( bic	has_nul2, tmp1, tmp2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	sub	len, len, #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	rev	has_nul2, has_nul2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	clz	pos, has_nul2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	add	len, len, pos, lsr #3       /* Bits to bytes.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	cmp	len, limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	csel	len, len, limit, ls     /* Return the lower value.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	ret
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) .Lmisaligned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	* Deal with a partial first word.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	* We're doing two things in parallel here;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	* 1) Calculate the number of words (but avoiding overflow if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	* limit is near ULONG_MAX) - to do this we need to work out
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	* limit + tmp1 - 1 as a 65-bit value before shifting it;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	* 2) Load and mask the initial data words - we force the bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	* before the ones we are interested in to 0xff - this ensures
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	* early bytes will not hit any zero detection.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	ldp	data1, data2, [src], #16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	sub	limit_wd, limit, #1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	and	tmp3, limit_wd, #15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	lsr	limit_wd, limit_wd, #4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	add	tmp3, tmp3, tmp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	add	limit_wd, limit_wd, tmp3, lsr #4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	neg	tmp4, tmp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	lsl	tmp4, tmp4, #3  /* Bytes beyond alignment -> bits.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	mov	tmp2, #~0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	/* Big-endian.  Early bytes are at MSB.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) CPU_BE( lsl	tmp2, tmp2, tmp4 )	/* Shift (tmp1 & 63).  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	/* Little-endian.  Early bytes are at LSB.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) CPU_LE( lsr	tmp2, tmp2, tmp4 )	/* Shift (tmp1 & 63).  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	cmp	tmp1, #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	orr	data1, data1, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	orr	data2a, data2, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	csinv	data1, data1, xzr, le
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	csel	data2, data2, data2a, le
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	b	.Lrealigned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) .Lhit_limit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	mov	len, limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	ret
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) SYM_FUNC_END_PI(strnlen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) EXPORT_SYMBOL_NOKASAN(strnlen)