^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* SPDX-License-Identifier: GPL-2.0-only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) 2013 ARM Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright (C) 2013 Linaro.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * This code is based on glibc cortex strings work originally authored by Linaro
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * be found @
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * files/head:/src/aarch64/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/linkage.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <asm/assembler.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * compare two strings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * Parameters:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * x0 - const string 1 pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * x1 - const string 2 pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * Returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * x0 - an integer less than, equal to, or greater than zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * if s1 is found, respectively, to be less than, to match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * or be greater than s2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define REP8_01 0x0101010101010101
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define REP8_7f 0x7f7f7f7f7f7f7f7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define REP8_80 0x8080808080808080
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) /* Parameters and result. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) src1 .req x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) src2 .req x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) result .req x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) /* Internal variables. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) data1 .req x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) data1w .req w2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) data2 .req x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) data2w .req w3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) has_nul .req x4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) diff .req x5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) syndrome .req x6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) tmp1 .req x7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) tmp2 .req x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) tmp3 .req x9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) zeroones .req x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) pos .req x11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) SYM_FUNC_START_WEAK_PI(strcmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) eor tmp1, src1, src2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) mov zeroones, #REP8_01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) tst tmp1, #7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) b.ne .Lmisaligned8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) ands tmp1, src1, #7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) b.ne .Lmutual_align
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) * NUL detection works on the principle that (X - 1) & (~X) & 0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * can be done in parallel across the entire word.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) .Lloop_aligned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) ldr data1, [src1], #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) ldr data2, [src2], #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) .Lstart_realigned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) sub tmp1, data1, zeroones
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) orr tmp2, data1, #REP8_7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) eor diff, data1, data2 /* Non-zero if differences found. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) orr syndrome, diff, has_nul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) cbz syndrome, .Lloop_aligned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) b .Lcal_cmpresult
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) .Lmutual_align:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) * Sources are mutually aligned, but are not currently at an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) * alignment boundary. Round down the addresses and then mask off
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * the bytes that preceed the start point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) bic src1, src1, #7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) bic src2, src2, #7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) ldr data1, [src1], #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) neg tmp1, tmp1 /* Bits to alignment -64. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) ldr data2, [src2], #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) mov tmp2, #~0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) /* Big-endian. Early bytes are at MSB. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) /* Little-endian. Early bytes are at LSB. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) orr data1, data1, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) orr data2, data2, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) b .Lstart_realigned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) .Lmisaligned8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * Get the align offset length to compare per byte first.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) * After this process, one string's address will be aligned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) and tmp1, src1, #7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) neg tmp1, tmp1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) add tmp1, tmp1, #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) and tmp2, src2, #7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) neg tmp2, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) add tmp2, tmp2, #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) subs tmp3, tmp1, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) csel pos, tmp1, tmp2, hi /*Choose the maximum. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) .Ltinycmp:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) ldrb data1w, [src1], #1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) ldrb data2w, [src2], #1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) subs pos, pos, #1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) b.eq .Ltinycmp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) cbnz pos, 1f /*find the null or unequal...*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) cmp data1w, #1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) ccmp data1w, data2w, #0, cs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) b.eq .Lstart_align /*the last bytes are equal....*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) sub result, data1, data2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) ret
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) .Lstart_align:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) ands xzr, src1, #7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) b.eq .Lrecal_offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) /*process more leading bytes to make str1 aligned...*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) add src1, src1, tmp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) add src2, src2, tmp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) /*load 8 bytes from aligned str1 and non-aligned str2..*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) ldr data1, [src1], #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) ldr data2, [src2], #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) sub tmp1, data1, zeroones
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) orr tmp2, data1, #REP8_7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) bic has_nul, tmp1, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) eor diff, data1, data2 /* Non-zero if differences found. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) orr syndrome, diff, has_nul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) cbnz syndrome, .Lcal_cmpresult
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) /*How far is the current str2 from the alignment boundary...*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) and tmp3, tmp3, #7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) .Lrecal_offset:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) neg pos, tmp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) .Lloopcmp_proc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) * Divide the eight bytes into two parts. First,backwards the src2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) * to an alignment boundary,load eight bytes from the SRC2 alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) * boundary,then compare with the relative bytes from SRC1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) * If all 8 bytes are equal,then start the second part's comparison.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) * Otherwise finish the comparison.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * This special handle can garantee all the accesses are in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * thread/task space in avoid to overrange access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) ldr data1, [src1,pos]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) ldr data2, [src2,pos]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) sub tmp1, data1, zeroones
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) orr tmp2, data1, #REP8_7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) bic has_nul, tmp1, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) eor diff, data1, data2 /* Non-zero if differences found. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) orr syndrome, diff, has_nul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) cbnz syndrome, .Lcal_cmpresult
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) /*The second part process*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) ldr data1, [src1], #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) ldr data2, [src2], #8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) sub tmp1, data1, zeroones
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) orr tmp2, data1, #REP8_7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) bic has_nul, tmp1, tmp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) eor diff, data1, data2 /* Non-zero if differences found. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) orr syndrome, diff, has_nul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) cbz syndrome, .Lloopcmp_proc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) .Lcal_cmpresult:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) * reversed the byte-order as big-endian,then CLZ can find the most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) * significant zero bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) CPU_LE( rev syndrome, syndrome )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) CPU_LE( rev data1, data1 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) CPU_LE( rev data2, data2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) * For big-endian we cannot use the trick with the syndrome value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) * as carry-propagation can corrupt the upper bits if the trailing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) * bytes in the string contain 0x01.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) * However, if there is no NUL byte in the dword, we can generate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) * the result directly. We cannot just subtract the bytes as the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) * MSB might be significant.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) CPU_BE( cbnz has_nul, 1f )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) CPU_BE( cmp data1, data2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) CPU_BE( cset result, ne )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) CPU_BE( cneg result, result, lo )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) CPU_BE( ret )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) CPU_BE( 1: )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) /*Re-compute the NUL-byte detection, using a byte-reversed value. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) CPU_BE( rev tmp3, data1 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) CPU_BE( sub tmp1, tmp3, zeroones )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) CPU_BE( orr tmp2, tmp3, #REP8_7f )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) CPU_BE( bic has_nul, tmp1, tmp2 )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) CPU_BE( rev has_nul, has_nul )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) CPU_BE( orr syndrome, diff, has_nul )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) clz pos, syndrome
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) * The MS-non-zero bit of the syndrome marks either the first bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) * that is different, or the top bit of the first zero byte.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) * Shifting left now will bring the critical information into the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) * top bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) lsl data1, data1, pos
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) lsl data2, data2, pos
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) * But we need to zero-extend (char is unsigned) the value and then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) * perform a signed 32-bit subtraction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) lsr data1, data1, #56
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) sub result, data1, data2, lsr #56
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) ret
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) SYM_FUNC_END_PI(strcmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) EXPORT_SYMBOL_NOKASAN(strcmp)