Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (C) 2017 ARM Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Author: Marc Zyngier <marc.zyngier@arm.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include <linux/kvm_host.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/random.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/memblock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <asm/alternative.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <asm/debug-monitors.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <asm/insn.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <asm/kvm_mmu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <asm/memory.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * The LSB of the HYP VA tag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) static u8 tag_lsb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  * The HYP VA tag value with the region bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) static u64 tag_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) static u64 va_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * Compute HYP VA by using the same computation as kern_hyp_va().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) static u64 __early_kern_hyp_va(u64 addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 	addr &= va_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	addr |= tag_val << tag_lsb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	return addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * Store a hyp VA <-> PA offset into a EL2-owned variable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) static void init_hyp_physvirt_offset(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	u64 kern_va, hyp_va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	/* Compute the offset from the hyp VA and PA of a random symbol. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	kern_va = (u64)lm_alias(__hyp_text_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	hyp_va = __early_kern_hyp_va(kern_va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * We want to generate a hyp VA with the following format (with V ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * vabits_actual):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  *  ---------------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * | 0000000 | hyp_va_msb |   random tag   |  kern linear VA |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  *           |--------- tag_val -----------|----- va_mask ---|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  * which does not conflict with the idmap regions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) __init void kvm_compute_layout(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	u64 hyp_va_msb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	/* Where is my RAM region? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	hyp_va_msb  = idmap_addr & BIT(vabits_actual - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	hyp_va_msb ^= BIT(vabits_actual - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 			(u64)(high_memory - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	va_mask = GENMASK_ULL(tag_lsb - 1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	tag_val = hyp_va_msb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 		/* We have some free bits to insert a random tag. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 		tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	tag_val >>= tag_lsb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	init_hyp_physvirt_offset();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * The .hyp.reloc ELF section contains a list of kimg positions that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * contains kimg VAs but will be accessed only in hyp execution context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  * Convert them to hyp VAs. See gen-hyprel.c for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) __init void kvm_apply_hyp_relocations(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	int32_t *rel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	int32_t *begin = (int32_t *)__hyp_reloc_begin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	int32_t *end = (int32_t *)__hyp_reloc_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	for (rel = begin; rel < end; ++rel) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		uintptr_t *ptr, kimg_va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 		 * Each entry contains a 32-bit relative offset from itself
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		 * to a kimg VA position.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		ptr = (uintptr_t *)lm_alias((char *)rel + *rel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		/* Read the kimg VA value at the relocation address. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 		kimg_va = *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		/* Convert to hyp VA and store back to the relocation address. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		*ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) static u32 compute_instruction(int n, u32 rd, u32 rn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	u32 insn = AARCH64_BREAK_FAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	switch (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 							  AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 							  rn, rd, va_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		/* ROR is a variant of EXTR with Rm = Rn */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 					     rn, rn, rd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 					     tag_lsb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 						    tag_val & GENMASK(11, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 						    AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 						    AARCH64_INSN_ADSB_ADD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 						    tag_val & GENMASK(23, 12),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 						    AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 						    AARCH64_INSN_ADSB_ADD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		/* ROR is a variant of EXTR with Rm = Rn */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 					     rn, rn, rd, 64 - tag_lsb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	return insn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) void __init kvm_update_va_mask(struct alt_instr *alt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 			       __le32 *origptr, __le32 *updptr, int nr_inst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	BUG_ON(nr_inst != 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	for (i = 0; i < nr_inst; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		u32 rd, rn, insn, oinsn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		 * VHE doesn't need any address translation, let's NOP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 		 * everything.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		 * Alternatively, if the tag is zero (because the layout
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		 * dictates it and we don't have any spare bits in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		 * address), NOP everything after masking the kernel VA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		if (has_vhe() || (!tag_val && i > 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 			updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		oinsn = le32_to_cpu(origptr[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 		rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 		rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 		insn = compute_instruction(i, rd, rn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 		BUG_ON(insn == AARCH64_BREAK_FAULT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 		updptr[i] = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) void kvm_patch_vector_branch(struct alt_instr *alt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 			     __le32 *origptr, __le32 *updptr, int nr_inst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	u64 addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	u32 insn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	BUG_ON(nr_inst != 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A) || WARN_ON_ONCE(has_vhe()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	 * Compute HYP VA by using the same computation as kern_hyp_va()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	/* Use PC[10:7] to branch to the same vector in KVM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	addr |= ((u64)origptr & GENMASK_ULL(10, 7));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	 * Branch over the preamble in order to avoid the initial store on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	 * the stack (which we already perform in the hardening vectors).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	addr += KVM_VECTOR_PREAMBLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	/* movz x0, #(addr & 0xffff) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 					 (u16)addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 					 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 					 AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 					 AARCH64_INSN_MOVEWIDE_ZERO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	*updptr++ = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	/* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 					 (u16)(addr >> 16),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 					 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 					 AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 					 AARCH64_INSN_MOVEWIDE_KEEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	*updptr++ = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	/* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 					 (u16)(addr >> 32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 					 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 					 AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 					 AARCH64_INSN_MOVEWIDE_KEEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	*updptr++ = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	/* br x0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 					   AARCH64_INSN_BRANCH_NOLINK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	*updptr++ = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	u32 insn, oinsn, rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	BUG_ON(nr_inst != 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	/* Compute target register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	oinsn = le32_to_cpu(*origptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	/* movz rd, #(val & 0xffff) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	insn = aarch64_insn_gen_movewide(rd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 					 (u16)val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 					 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 					 AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 					 AARCH64_INSN_MOVEWIDE_ZERO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	*updptr++ = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	/* movk rd, #((val >> 16) & 0xffff), lsl #16 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	insn = aarch64_insn_gen_movewide(rd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 					 (u16)(val >> 16),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 					 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 					 AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 					 AARCH64_INSN_MOVEWIDE_KEEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	*updptr++ = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	/* movk rd, #((val >> 32) & 0xffff), lsl #32 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	insn = aarch64_insn_gen_movewide(rd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 					 (u16)(val >> 32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 					 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 					 AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 					 AARCH64_INSN_MOVEWIDE_KEEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	*updptr++ = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	/* movk rd, #((val >> 48) & 0xffff), lsl #48 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	insn = aarch64_insn_gen_movewide(rd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 					 (u16)(val >> 48),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 					 48,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 					 AARCH64_INSN_VARIANT_64BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 					 AARCH64_INSN_MOVEWIDE_KEEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	*updptr++ = cpu_to_le32(insn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) void kvm_get_kimage_voffset(struct alt_instr *alt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 			    __le32 *origptr, __le32 *updptr, int nr_inst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) void kvm_compute_final_ctr_el0(struct alt_instr *alt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 			       __le32 *origptr, __le32 *updptr, int nr_inst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		       origptr, updptr, nr_inst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) }