^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) 2012,2013 - ARM Ltd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Author: Marc Zyngier <marc.zyngier@arm.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Derived from arch/arm/kvm/guest.c:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (C) 2012 - Virtual Open Systems and Columbia University
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Author: Christoffer Dall <c.dall@virtualopensystems.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/bits.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/nospec.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/kvm_host.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/stddef.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/vmalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <kvm/arm_psci.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <asm/cputype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <asm/fpsimd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <asm/kvm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <asm/kvm_emulate.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include <asm/sigcontext.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include "trace.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) struct kvm_stats_debugfs_item debugfs_entries[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) VCPU_STAT("halt_successful_poll", halt_successful_poll),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) VCPU_STAT("halt_wakeup", halt_wakeup),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) VCPU_STAT("mmio_exit_user", mmio_exit_user),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) VCPU_STAT("exits", exits),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) { NULL }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) static bool core_reg_offset_is_vreg(u64 off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) static u64 core_reg_offset_from_id(u64 id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) int size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) switch (off) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) KVM_REG_ARM_CORE_REG(regs.regs[30]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) case KVM_REG_ARM_CORE_REG(regs.sp):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) case KVM_REG_ARM_CORE_REG(regs.pc):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) case KVM_REG_ARM_CORE_REG(regs.pstate):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) case KVM_REG_ARM_CORE_REG(sp_el1):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) case KVM_REG_ARM_CORE_REG(elr_el1):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) case KVM_REG_ARM_CORE_REG(spsr[0]) ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) size = sizeof(__u64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) size = sizeof(__uint128_t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) size = sizeof(__u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) if (!IS_ALIGNED(off, size / sizeof(__u32)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) * The KVM_REG_ARM64_SVE regs must be used instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * SVE-enabled vcpus:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) u64 off = core_reg_offset_from_id(reg->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) int size = core_reg_size_from_offset(vcpu, off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) if (size < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) if (KVM_REG_SIZE(reg->id) != size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) switch (off) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) KVM_REG_ARM_CORE_REG(regs.regs[30]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) off /= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) return &vcpu->arch.ctxt.regs.regs[off];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) case KVM_REG_ARM_CORE_REG(regs.sp):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) return &vcpu->arch.ctxt.regs.sp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) case KVM_REG_ARM_CORE_REG(regs.pc):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) return &vcpu->arch.ctxt.regs.pc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) case KVM_REG_ARM_CORE_REG(regs.pstate):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) return &vcpu->arch.ctxt.regs.pstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) case KVM_REG_ARM_CORE_REG(sp_el1):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) case KVM_REG_ARM_CORE_REG(elr_el1):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) return &vcpu->arch.ctxt.spsr_abt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) return &vcpu->arch.ctxt.spsr_und;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) return &vcpu->arch.ctxt.spsr_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) return &vcpu->arch.ctxt.spsr_fiq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) off /= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) return &vcpu->arch.ctxt.fp_regs.vregs[off];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) return &vcpu->arch.ctxt.fp_regs.fpsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) return &vcpu->arch.ctxt.fp_regs.fpcr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) * Because the kvm_regs structure is a mix of 32, 64 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) * 128bit fields, we index it as if it was a 32bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) * array. Hence below, nr_regs is the number of entries, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) * off the index in the "array".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) void *addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) u32 off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) /* Our ID is an index into the kvm_regs struct. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) off = core_reg_offset_from_id(reg->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) if (off >= nr_regs ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) addr = core_reg_addr(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) __uint128_t tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) void *valp = &tmp, *addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) u64 off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) int err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) /* Our ID is an index into the kvm_regs struct. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) off = core_reg_offset_from_id(reg->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) if (off >= nr_regs ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) addr = core_reg_addr(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) err = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) switch (mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) case PSR_AA32_MODE_USR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) if (!system_supports_32bit_el0())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) case PSR_AA32_MODE_FIQ:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) case PSR_AA32_MODE_IRQ:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) case PSR_AA32_MODE_SVC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) case PSR_AA32_MODE_ABT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) case PSR_AA32_MODE_UND:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) if (!vcpu_el1_is_32bit(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) case PSR_MODE_EL0t:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) case PSR_MODE_EL1t:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) case PSR_MODE_EL1h:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) if (vcpu_el1_is_32bit(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) err = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) memcpy(addr, valp, KVM_REG_SIZE(reg->id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) int i, nr_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) switch (*vcpu_cpsr(vcpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) * Either we are dealing with user mode, and only the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) * first 15 registers (+ PC) must be narrowed to 32bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) case PSR_AA32_MODE_USR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) case PSR_AA32_MODE_SYS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) nr_reg = 15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) * Otherwide, this is a priviledged mode, and *all* the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) * registers must be narrowed to 32bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) nr_reg = 31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) for (i = 0; i < nr_reg; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) unsigned int max_vq, vq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) if (!vcpu_has_sve(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) memset(vqs, 0, sizeof(vqs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) max_vq = vcpu_sve_max_vq(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) if (sve_vq_available(vq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) vqs[vq_word(vq)] |= vq_mask(vq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) unsigned int max_vq, vq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) if (!vcpu_has_sve(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) if (kvm_arm_vcpu_sve_finalized(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) return -EPERM; /* too late! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) if (WARN_ON(vcpu->arch.sve_state))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) max_vq = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) if (vq_present(vqs, vq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) max_vq = vq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) * Vector lengths supported by the host can't currently be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) * hidden from the guest individually: instead we can only set a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) * maximum via ZCR_EL2.LEN. So, make sure the available vector
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) * lengths match the set requested exactly up to the requested
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) * maximum:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) if (vq_present(vqs, vq) != sve_vq_available(vq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) /* Can't run with no vector lengths at all: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) if (max_vq < SVE_VQ_MIN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) #define SVE_REG_SLICE_SHIFT 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) #define SVE_REG_SLICE_BITS 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) #define SVE_REG_ID_BITS 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) #define SVE_REG_SLICE_MASK \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) SVE_REG_SLICE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) #define SVE_REG_ID_MASK \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) * Number of register slices required to cover each whole SVE register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) * NOTE: Only the first slice every exists, for now.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) * If you are tempted to modify this, you must also rework sve_reg_to_region()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) * to match:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) #define vcpu_sve_slices(vcpu) 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) struct sve_state_reg_region {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) unsigned int koffset; /* offset into sve_state in kernel memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) unsigned int klen; /* length in kernel memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) unsigned int upad; /* extra trailing padding in user memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) * Validate SVE register ID and get sanitised bounds for user/kernel SVE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) * register copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) static int sve_reg_to_region(struct sve_state_reg_region *region,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) /* reg ID ranges for Z- registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) SVE_NUM_SLICES - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) /* reg ID ranges for P- registers and FFR (which are contiguous) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) unsigned int vq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) unsigned int reg_num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) unsigned int reqoffset, reqlen; /* User-requested offset and length */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) unsigned int maxlen; /* Maximum permitted length */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) size_t sve_state_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) SVE_NUM_SLICES - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) /* Verify that the P-regs and FFR really do have contiguous IDs: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) /* Verify that we match the UAPI header: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) vq = vcpu_sve_max_vq(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) SVE_SIG_REGS_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) reqlen = KVM_SVE_ZREG_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) maxlen = SVE_SIG_ZREG_SIZE(vq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) vq = vcpu_sve_max_vq(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) SVE_SIG_REGS_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) reqlen = KVM_SVE_PREG_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) maxlen = SVE_SIG_PREG_SIZE(vq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) sve_state_size = vcpu_sve_state_size(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) if (WARN_ON(!sve_state_size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) region->koffset = array_index_nospec(reqoffset, sve_state_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) region->klen = min(maxlen, reqlen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) region->upad = reqlen - region->klen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) struct sve_state_reg_region region;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) char __user *uptr = (char __user *)reg->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) if (reg->id == KVM_REG_ARM64_SVE_VLS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) return get_sve_vls(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) /* Try to interpret reg ID as an architectural SVE register... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) ret = sve_reg_to_region(®ion, vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) if (!kvm_arm_vcpu_sve_finalized(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) region.klen) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) clear_user(uptr + region.klen, region.upad))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) struct sve_state_reg_region region;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) const char __user *uptr = (const char __user *)reg->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) if (reg->id == KVM_REG_ARM64_SVE_VLS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) return set_sve_vls(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) /* Try to interpret reg ID as an architectural SVE register... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) ret = sve_reg_to_region(®ion, vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) if (!kvm_arm_vcpu_sve_finalized(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) region.klen))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) u64 __user *uindices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) int n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) int size = core_reg_size_from_offset(vcpu, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) if (size < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) switch (size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) case sizeof(__u32):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) reg |= KVM_REG_SIZE_U32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) case sizeof(__u64):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) reg |= KVM_REG_SIZE_U64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) case sizeof(__uint128_t):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) reg |= KVM_REG_SIZE_U128;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) WARN_ON(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) if (uindices) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) if (put_user(reg, uindices))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) uindices++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) n++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) return n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) return copy_core_reg_indices(vcpu, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) * ARM64 versions of the TIMER registers, always available on arm64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) #define NUM_TIMER_REGS 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) static bool is_timer_reg(u64 index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) switch (index) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) case KVM_REG_ARM_TIMER_CTL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) case KVM_REG_ARM_TIMER_CNT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) case KVM_REG_ARM_TIMER_CVAL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) uindices++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) uindices++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) void __user *uaddr = (void __user *)(long)reg->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) u64 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) if (ret != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) return kvm_arm_timer_set_reg(vcpu, reg->id, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) void __user *uaddr = (void __user *)(long)reg->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) u64 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) val = kvm_arm_timer_get_reg(vcpu, reg->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) const unsigned int slices = vcpu_sve_slices(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) if (!vcpu_has_sve(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) /* Policed by KVM_GET_REG_LIST: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) + 1; /* KVM_REG_ARM64_SVE_VLS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) u64 __user *uindices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) const unsigned int slices = vcpu_sve_slices(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) u64 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) unsigned int i, n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) int num_regs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) if (!vcpu_has_sve(vcpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) /* Policed by KVM_GET_REG_LIST: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) * Enumerate this first, so that userspace can save/restore in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) * the order reported by KVM_GET_REG_LIST:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) reg = KVM_REG_ARM64_SVE_VLS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) if (put_user(reg, uindices++))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) ++num_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) for (i = 0; i < slices; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) for (n = 0; n < SVE_NUM_ZREGS; n++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) reg = KVM_REG_ARM64_SVE_ZREG(n, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) if (put_user(reg, uindices++))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) num_regs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) for (n = 0; n < SVE_NUM_PREGS; n++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) reg = KVM_REG_ARM64_SVE_PREG(n, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) if (put_user(reg, uindices++))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) num_regs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) reg = KVM_REG_ARM64_SVE_FFR(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) if (put_user(reg, uindices++))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) num_regs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) return num_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) * This is for all registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) unsigned long res = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) res += num_core_regs(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) res += num_sve_regs(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) res += kvm_arm_num_sys_reg_descs(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) res += kvm_arm_get_fw_num_regs(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) res += NUM_TIMER_REGS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) * kvm_arm_copy_reg_indices - get indices of all registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) * We do core registers right here, then we append system regs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) ret = copy_core_reg_indices(vcpu, uindices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) uindices += ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) ret = copy_sve_reg_indices(vcpu, uindices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) uindices += ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) uindices += kvm_arm_get_fw_num_regs(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) ret = copy_timer_indices(vcpu, uindices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) uindices += NUM_TIMER_REGS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) /* We currently use nothing arch-specific in upper 32 bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) if (is_timer_reg(reg->id))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) return get_timer_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) return kvm_arm_sys_reg_get_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) /* We currently use nothing arch-specific in upper 32 bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) if (is_timer_reg(reg->id))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) return set_timer_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) return kvm_arm_sys_reg_set_reg(vcpu, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) struct kvm_sregs *sregs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) struct kvm_sregs *sregs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) struct kvm_vcpu_events *events)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) if (events->exception.serror_pending && events->exception.serror_has_esr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) events->exception.serror_esr = vcpu_get_vsesr(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) * We never return a pending ext_dabt here because we deliver it to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) * the virtual CPU directly when setting the event and it's no longer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) * 'pending' at this point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) struct kvm_vcpu_events *events)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) bool serror_pending = events->exception.serror_pending;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) bool has_esr = events->exception.serror_has_esr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) bool ext_dabt_pending = events->exception.ext_dabt_pending;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) if (serror_pending && has_esr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) kvm_set_sei_esr(vcpu, events->exception.serror_esr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) } else if (serror_pending) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) kvm_inject_vabt(vcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) if (ext_dabt_pending)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) int __attribute_const__ kvm_target_cpu(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) unsigned long implementor = read_cpuid_implementor();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) unsigned long part_number = read_cpuid_part_number();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) switch (implementor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) case ARM_CPU_IMP_ARM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) switch (part_number) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) case ARM_CPU_PART_AEM_V8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) return KVM_ARM_TARGET_AEM_V8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) case ARM_CPU_PART_FOUNDATION:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) return KVM_ARM_TARGET_FOUNDATION_V8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) case ARM_CPU_PART_CORTEX_A53:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) return KVM_ARM_TARGET_CORTEX_A53;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) case ARM_CPU_PART_CORTEX_A57:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) return KVM_ARM_TARGET_CORTEX_A57;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) case ARM_CPU_IMP_APM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) switch (part_number) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) case APM_CPU_PART_POTENZA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) return KVM_ARM_TARGET_XGENE_POTENZA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) /* Return a default generic target */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) return KVM_ARM_TARGET_GENERIC_V8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) int target = kvm_target_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) if (target < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) memset(init, 0, sizeof(*init));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) * For now, we don't return any features.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) * In future, we might use features to return target
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) * specific features available for the preferred
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) * target type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) init->target = (__u32)target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) struct kvm_translation *tr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) KVM_GUESTDBG_USE_SW_BP | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) KVM_GUESTDBG_USE_HW | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) KVM_GUESTDBG_SINGLESTEP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) * @kvm: pointer to the KVM struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) * @kvm_guest_debug: the ioctl data buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) * This sets up and enables the VM for guest debugging. Userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) * passes in a control flag to enable different debug types and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) * potentially other architecture specific information in the rest of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) * the structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) struct kvm_guest_debug *dbg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) trace_kvm_set_guest_debug(vcpu, dbg->control);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) if (dbg->control & KVM_GUESTDBG_ENABLE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) vcpu->guest_debug = dbg->control;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) /* Hardware assisted Break and Watch points */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) vcpu->arch.external_debug_state = dbg->arch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) /* If not enabled clear all flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) vcpu->guest_debug = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) struct kvm_device_attr *attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) switch (attr->group) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) case KVM_ARM_VCPU_PMU_V3_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) case KVM_ARM_VCPU_TIMER_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) ret = kvm_arm_timer_set_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) case KVM_ARM_VCPU_PVTIME_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) ret = kvm_arm_pvtime_set_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) ret = -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) struct kvm_device_attr *attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) switch (attr->group) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) case KVM_ARM_VCPU_PMU_V3_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) case KVM_ARM_VCPU_TIMER_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) ret = kvm_arm_timer_get_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) case KVM_ARM_VCPU_PVTIME_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) ret = kvm_arm_pvtime_get_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) ret = -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) struct kvm_device_attr *attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) switch (attr->group) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) case KVM_ARM_VCPU_PMU_V3_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) case KVM_ARM_VCPU_TIMER_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) ret = kvm_arm_timer_has_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) case KVM_ARM_VCPU_PVTIME_CTRL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) ret = kvm_arm_pvtime_has_attr(vcpu, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) ret = -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) }