^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * SMP initialisation and IPI support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Based on arch/arm/kernel/smp.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (C) 2012 ARM Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/acpi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/arm_sdei.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/sched/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/sched/hotplug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/sched/task_stack.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/cache.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/profile.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <linux/seq_file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <linux/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include <linux/irqchip/arm-gic-v3.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <linux/percpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <linux/clockchips.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <linux/completion.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/irq_work.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <linux/kernel_stat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include <linux/kexec.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #include <linux/kvm_host.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #include <asm/alternative.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #include <asm/atomic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #include <asm/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #include <asm/cputype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #include <asm/cpu_ops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #include <asm/daifflags.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #include <asm/kvm_mmu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #include <asm/mmu_context.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #include <asm/numa.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #include <asm/processor.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #include <asm/smp_plat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #include <asm/sections.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #include <asm/tlbflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #include <asm/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #include <asm/virt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #define CREATE_TRACE_POINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #include <trace/events/ipi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #undef CREATE_TRACE_POINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #include <trace/hooks/debug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) EXPORT_PER_CPU_SYMBOL(cpu_number);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) * as from 2.5, kernels no longer have an init_tasks structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * so we need some other way of telling a new secondary core
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * where to place its SVC stack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) struct secondary_data secondary_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) /* Number of CPUs which aren't online, but looping in kernel text. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) static int cpus_stuck_in_kernel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) enum ipi_msg_type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) IPI_RESCHEDULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) IPI_CALL_FUNC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) IPI_CPU_STOP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) IPI_CPU_CRASH_STOP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) IPI_TIMER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) IPI_IRQ_WORK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) IPI_WAKEUP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) NR_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) static int ipi_irq_base __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) static int nr_ipi __read_mostly = NR_IPI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) static void ipi_setup(int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) static void ipi_teardown(int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) static int op_cpu_kill(unsigned int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) static inline int op_cpu_kill(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) return -ENOSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) * Boot a secondary CPU, and assign it the specified idle task.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) * This also gives us the initial stack to use for this CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) static int boot_secondary(unsigned int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) const struct cpu_operations *ops = get_cpu_ops(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) if (ops->cpu_boot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) return ops->cpu_boot(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) static DECLARE_COMPLETION(cpu_running);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) int __cpu_up(unsigned int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) long status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) * We need to tell the secondary core where to find its stack and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) * page tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) secondary_data.task = idle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) update_cpu_boot_status(CPU_MMU_OFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) __flush_dcache_area(&secondary_data, sizeof(secondary_data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) /* Now bring the CPU into our world */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) ret = boot_secondary(cpu, idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) * CPU was successfully started, wait for it to come online or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) * time out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) wait_for_completion_timeout(&cpu_running,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) msecs_to_jiffies(5000));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) if (cpu_online(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) pr_crit("CPU%u: failed to come online\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) secondary_data.task = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) secondary_data.stack = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) __flush_dcache_area(&secondary_data, sizeof(secondary_data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) status = READ_ONCE(secondary_data.status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) if (status == CPU_MMU_OFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) status = READ_ONCE(__early_cpu_boot_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) switch (status & CPU_BOOT_STATUS_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) pr_err("CPU%u: failed in unknown state : 0x%lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) cpu, status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) cpus_stuck_in_kernel++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) case CPU_KILL_ME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) if (!op_cpu_kill(cpu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) pr_crit("CPU%u: died during early boot\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) case CPU_STUCK_IN_KERNEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) pr_crit("CPU%u: is stuck in kernel\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) if (status & CPU_STUCK_REASON_52_BIT_VA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) if (status & CPU_STUCK_REASON_NO_GRAN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) pr_crit("CPU%u: does not support %luK granule\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) cpu, PAGE_SIZE / SZ_1K);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) cpus_stuck_in_kernel++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) case CPU_PANIC_KERNEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) panic("CPU%u detected unsupported configuration\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) static void init_gic_priority_masking(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) u32 cpuflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) if (WARN_ON(!gic_enable_sre()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) cpuflags = read_sysreg(daif);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) WARN_ON(!(cpuflags & PSR_I_BIT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) * This is the secondary CPU boot entry. We're using this CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * idle thread stack, but a set of temporary page tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) asmlinkage notrace void secondary_start_kernel(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) struct mm_struct *mm = &init_mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) const struct cpu_operations *ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) cpu = task_cpu(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) set_my_cpu_offset(per_cpu_offset(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) * All kernel threads share the same mm context; grab a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) * reference and switch to it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) mmgrab(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) current->active_mm = mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) * TTBR0 is only used for the identity mapping at this stage. Make it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) * point to zero page to avoid speculatively fetching new entries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) cpu_uninstall_idmap();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) if (system_uses_irq_prio_masking())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) init_gic_priority_masking();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) rcu_cpu_starting(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) trace_hardirqs_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) * If the system has established the capabilities, make sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) * this CPU ticks all of those. If it doesn't, the CPU will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) * fail to come online.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) check_local_cpu_capabilities();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) ops = get_cpu_ops(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) if (ops->cpu_postboot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) ops->cpu_postboot();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) * Log the CPU info before it is marked online and might get read.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) cpuinfo_store_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) * Enable GIC and timers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) notify_cpu_starting(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) ipi_setup(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) store_cpu_topology(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) numa_add_cpu(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) * OK, now it's safe to let the boot CPU continue. Wait for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) * the CPU migration code to notice that the CPU is online
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) * before we continue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) cpu, (unsigned long)mpidr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) read_cpuid_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) update_cpu_boot_status(CPU_BOOT_SUCCESS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) set_cpu_online(cpu, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) complete(&cpu_running);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) local_daif_restore(DAIF_PROCCTX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) * OK, it's off to the idle thread for us
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) static int op_cpu_disable(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) const struct cpu_operations *ops = get_cpu_ops(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) * If we don't have a cpu_die method, abort before we reach the point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * of no return. CPU0 may not have an cpu_ops, so test for it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) if (!ops || !ops->cpu_die)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) * We may need to abort a hot unplug for some other mechanism-specific
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) * reason.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) if (ops->cpu_disable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) return ops->cpu_disable(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) * __cpu_disable runs on the processor to be shutdown.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) int __cpu_disable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) ret = op_cpu_disable(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) remove_cpu_topology(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) numa_remove_cpu(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) * Take this CPU offline. Once we clear this, we can't return,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) * and we must not schedule until we're ready to give up the cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) set_cpu_online(cpu, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) ipi_teardown(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) * OK - migrate IRQs away from this CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) irq_migrate_all_off_this_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) static int op_cpu_kill(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) const struct cpu_operations *ops = get_cpu_ops(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) * If we have no means of synchronising with the dying CPU, then assume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) * that it is really dead. We can only wait for an arbitrary length of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) * time and hope that it's dead, so let's skip the wait and just hope.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) if (!ops->cpu_kill)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) return ops->cpu_kill(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) * called on the thread which is asking for a CPU to be shutdown -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) * waits until shutdown has completed, or it is timed out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) void __cpu_die(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) if (!cpu_wait_death(cpu, 5)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) pr_crit("CPU%u: cpu didn't die\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) pr_debug("CPU%u: shutdown\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) * Now that the dying CPU is beyond the point of no return w.r.t.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) * in-kernel synchronisation, try to get the firwmare to help us to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) * verify that it has really left the kernel before we consider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) * clobbering anything it might still be using.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) err = op_cpu_kill(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) * Called from the idle thread for the CPU which has been shutdown.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) void cpu_die(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) const struct cpu_operations *ops = get_cpu_ops(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) idle_task_exit();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) local_daif_mask();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) /* Tell __cpu_die() that this CPU is now safe to dispose of */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) (void)cpu_report_death();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) * Actually shutdown the CPU. This must never fail. The specific hotplug
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) * mechanism must perform all required cache maintenance to ensure that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) * no dirty lines are lost in the process of shutting down the CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) ops->cpu_die(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) static void __cpu_try_die(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) const struct cpu_operations *ops = get_cpu_ops(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) if (ops && ops->cpu_die)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) ops->cpu_die(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) * Kill the calling secondary CPU, early in bringup before it is turned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) * online.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) void cpu_die_early(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) pr_crit("CPU%d: will not boot\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) /* Mark this CPU absent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) set_cpu_present(cpu, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) rcu_report_dead(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) update_cpu_boot_status(CPU_KILL_ME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) __cpu_try_die(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) cpu_park_loop();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) static void __init hyp_mode_check(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) if (is_hyp_mode_available())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) pr_info("CPU: All CPU(s) started at EL2\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) else if (is_hyp_mode_mismatched())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) "CPU: CPUs started in inconsistent modes");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) pr_info("CPU: All CPU(s) started at EL1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) kvm_compute_layout();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) kvm_apply_hyp_relocations();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) void __init smp_cpus_done(unsigned int max_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) setup_cpu_features();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) hyp_mode_check();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) apply_alternatives_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) mark_linear_text_alias_ro();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) void __init smp_prepare_boot_cpu(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) cpuinfo_store_boot_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) * We now know enough about the boot CPU to apply the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) * alternatives that cannot wait until interrupt handling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) * and/or scheduling is enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) apply_boot_alternatives();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) /* Conditionally switch to GIC PMR for interrupt masking */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) if (system_uses_irq_prio_masking())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) init_gic_priority_masking();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) kasan_init_hw_tags();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) static u64 __init of_get_cpu_mpidr(struct device_node *dn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) const __be32 *cell;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) u64 hwid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) * A cpu node with missing "reg" property is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) * considered invalid to build a cpu_logical_map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) * entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) cell = of_get_property(dn, "reg", NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) if (!cell) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) pr_err("%pOF: missing reg property\n", dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) return INVALID_HWID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) hwid = of_read_number(cell, of_n_addr_cells(dn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) * Non affinity bits must be set to 0 in the DT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) if (hwid & ~MPIDR_HWID_BITMASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) pr_err("%pOF: invalid reg property\n", dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) return INVALID_HWID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) return hwid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) * entries and check for duplicates. If any is found just ignore the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) * matching valid MPIDR values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) if (cpu_logical_map(i) == hwid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) * Initialize cpu operations for a logical cpu and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) * set it in the possible mask on success
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) static int __init smp_cpu_setup(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) const struct cpu_operations *ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) if (init_cpu_ops(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) ops = get_cpu_ops(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) if (ops->cpu_init(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) set_cpu_possible(cpu, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) static bool bootcpu_valid __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) static unsigned int cpu_count = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) #ifdef CONFIG_ACPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) return &cpu_madt_gicc[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) * acpi_map_gic_cpu_interface - parse processor MADT entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) * Carry out sanity checks on MADT processor entry and initialize
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) * cpu_logical_map on success
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) static void __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) u64 hwid = processor->arm_mpidr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) if (!(processor->flags & ACPI_MADT_ENABLED)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) if (is_mpidr_duplicate(cpu_count, hwid)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) /* Check if GICC structure of boot CPU is available in the MADT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) if (cpu_logical_map(0) == hwid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) if (bootcpu_valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) hwid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) bootcpu_valid = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) cpu_madt_gicc[0] = *processor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) if (cpu_count >= NR_CPUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) /* map the logical cpu id to cpu MPIDR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) set_cpu_logical_map(cpu_count, hwid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) cpu_madt_gicc[cpu_count] = *processor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) * Set-up the ACPI parking protocol cpu entries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) * while initializing the cpu_logical_map to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) * avoid parsing MADT entries multiple times for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) * nothing (ie a valid cpu_logical_map entry should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) * contain a valid parking protocol data set to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) * initialize the cpu if the parking protocol is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) * the only available enable method).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) acpi_set_mailbox_entry(cpu_count, processor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) cpu_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) static int __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) const unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) struct acpi_madt_generic_interrupt *processor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) processor = (struct acpi_madt_generic_interrupt *)header;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) if (BAD_MADT_GICC_ENTRY(processor, end))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) acpi_table_print_madt_entry(&header->common);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) acpi_map_gic_cpu_interface(processor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) static void __init acpi_parse_and_init_cpus(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) * do a walk of MADT to determine how many CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) * we have including disabled CPUs, and get information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) * we need for SMP init.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) acpi_parse_gic_cpu_interface, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) * In ACPI, SMP and CPU NUMA information is provided in separate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) * static tables, namely the MADT and the SRAT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) * Thus, it is simpler to first create the cpu logical map through
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) * an MADT walk and then map the logical cpus to their node ids
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) * as separate steps.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) acpi_map_cpus_to_nodes();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) for (i = 0; i < nr_cpu_ids; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) early_map_cpu_to_node(i, acpi_numa_get_nid(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) #define acpi_parse_and_init_cpus(...) do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) * Enumerate the possible CPU set from the device tree and build the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) * cpu logical map array containing MPIDR values related to logical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) * cpus. Assumes that cpu_logical_map(0) has already been initialized.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) static void __init of_parse_and_init_cpus(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) struct device_node *dn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) for_each_of_cpu_node(dn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) u64 hwid = of_get_cpu_mpidr(dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) if (hwid == INVALID_HWID)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) if (is_mpidr_duplicate(cpu_count, hwid)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) pr_err("%pOF: duplicate cpu reg properties in the DT\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) * The numbering scheme requires that the boot CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) * must be assigned logical id 0. Record it so that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) * the logical map built from DT is validated and can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) * be used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) if (hwid == cpu_logical_map(0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) if (bootcpu_valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) pr_err("%pOF: duplicate boot cpu reg property in DT\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) bootcpu_valid = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) early_map_cpu_to_node(0, of_node_to_nid(dn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) * cpu_logical_map has already been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) * initialized and the boot cpu doesn't need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) * the enable-method so continue without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) * incrementing cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) if (cpu_count >= NR_CPUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) pr_debug("cpu logical map 0x%llx\n", hwid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) set_cpu_logical_map(cpu_count, hwid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) next:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) cpu_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) * Enumerate the possible CPU set from the device tree or ACPI and build the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) * cpu logical map array containing MPIDR values related to logical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) * cpus. Assumes that cpu_logical_map(0) has already been initialized.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) void __init smp_init_cpus(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) if (acpi_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) of_parse_and_init_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) acpi_parse_and_init_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) if (cpu_count > nr_cpu_ids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) cpu_count, nr_cpu_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) if (!bootcpu_valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) * We need to set the cpu_logical_map entries before enabling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) * the cpus so that cpu processor description entries (DT cpu nodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) * and ACPI MADT entries) can be retrieved by matching the cpu hwid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) * with entries in cpu_logical_map while initializing the cpus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) * If the cpu set-up fails, invalidate the cpu_logical_map entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) for (i = 1; i < nr_cpu_ids; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) if (cpu_logical_map(i) != INVALID_HWID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) if (smp_cpu_setup(i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) set_cpu_logical_map(i, INVALID_HWID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) void __init smp_prepare_cpus(unsigned int max_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) const struct cpu_operations *ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) unsigned int this_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) init_cpu_topology();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) this_cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) store_cpu_topology(this_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) numa_store_cpu_info(this_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) numa_add_cpu(this_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) * secondary CPUs present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) if (max_cpus == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) * Initialise the present map (which describes the set of CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) * actually populated at the present time) and release the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) * secondaries from the bootloader.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) per_cpu(cpu_number, cpu) = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) if (cpu == smp_processor_id())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) ops = get_cpu_ops(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) if (!ops)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) err = ops->cpu_prepare(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) set_cpu_present(cpu, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) numa_store_cpu_info(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) static const char *ipi_types[NR_IPI] __tracepoint_string = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) #define S(x,s) [x] = s
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) S(IPI_RESCHEDULE, "Rescheduling interrupts"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) S(IPI_CALL_FUNC, "Function call interrupts"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) S(IPI_CPU_STOP, "CPU stop interrupts"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) S(IPI_TIMER, "Timer broadcast interrupts"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) S(IPI_IRQ_WORK, "IRQ work interrupts"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) S(IPI_WAKEUP, "CPU wake-up interrupts"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) unsigned long irq_err_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) int arch_show_interrupts(struct seq_file *p, int prec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) unsigned int cpu, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) for (i = 0; i < NR_IPI; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) unsigned int irq = irq_desc_get_irq(ipi_desc[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) prec >= 4 ? " " : "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) for_each_online_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) seq_printf(p, " %s\n", ipi_types[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) void arch_send_call_function_ipi_mask(const struct cpumask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) smp_cross_call(mask, IPI_CALL_FUNC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) void arch_send_call_function_single_ipi(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) smp_cross_call(mask, IPI_WAKEUP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) #ifdef CONFIG_IRQ_WORK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) void arch_irq_work_raise(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) static void local_cpu_stop(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) if (system_state <= SYSTEM_RUNNING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) pr_crit("CPU%u: stopping\n", smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) set_cpu_online(smp_processor_id(), false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) local_daif_mask();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) sdei_mask_local_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) cpu_park_loop();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) * We need to implement panic_smp_self_stop() for parallel panic() calls, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) * CPUs that have already stopped themselves.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) void panic_smp_self_stop(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) local_cpu_stop();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) #ifdef CONFIG_KEXEC_CORE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) #ifdef CONFIG_KEXEC_CORE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) crash_save_cpu(regs, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) atomic_dec(&waiting_for_crash_ipi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) sdei_mask_local_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) __cpu_try_die(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) /* just in case */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) cpu_park_loop();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) * Main handler for inter-processor interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) static void do_handle_IPI(int ipinr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) if ((unsigned)ipinr < NR_IPI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) trace_ipi_entry_rcuidle(ipi_types[ipinr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) switch (ipinr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) case IPI_RESCHEDULE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) scheduler_ipi();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) case IPI_CALL_FUNC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) generic_smp_call_function_interrupt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) case IPI_CPU_STOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) trace_android_vh_ipi_stop_rcuidle(get_irq_regs());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) local_cpu_stop();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) case IPI_CPU_CRASH_STOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) ipi_cpu_crash_stop(cpu, get_irq_regs());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) unreachable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) case IPI_TIMER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) tick_receive_broadcast();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) #ifdef CONFIG_IRQ_WORK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) case IPI_IRQ_WORK:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) irq_work_run();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) case IPI_WAKEUP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) WARN_ONCE(!acpi_parking_protocol_valid(cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) if ((unsigned)ipinr < NR_IPI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) trace_ipi_exit_rcuidle(ipi_types[ipinr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) static irqreturn_t ipi_handler(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) do_handle_IPI(irq - ipi_irq_base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) trace_ipi_raise(target, ipi_types[ipinr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) __ipi_send_mask(ipi_desc[ipinr], target);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) static void ipi_setup(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) if (WARN_ON_ONCE(!ipi_irq_base))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) for (i = 0; i < nr_ipi; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) enable_percpu_irq(ipi_irq_base + i, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) static void ipi_teardown(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) if (WARN_ON_ONCE(!ipi_irq_base))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) for (i = 0; i < nr_ipi; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) disable_percpu_irq(ipi_irq_base + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) void __init set_smp_ipi_range(int ipi_base, int n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) WARN_ON(n < NR_IPI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) nr_ipi = min(n, NR_IPI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) for (i = 0; i < nr_ipi; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) err = request_percpu_irq(ipi_base + i, ipi_handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) "IPI", &cpu_number);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) WARN_ON(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) ipi_desc[i] = irq_to_desc(ipi_base + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) /* The recheduling IPI is special... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) if (i == IPI_RESCHEDULE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) __irq_modify_status(ipi_base + i, 0, IRQ_RAW, ~0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) ipi_irq_base = ipi_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) /* Setup the boot CPU immediately */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) ipi_setup(smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) void smp_send_reschedule(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) void tick_broadcast(const struct cpumask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) smp_cross_call(mask, IPI_TIMER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) * The number of CPUs online, not counting this CPU (which may not be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) * fully online and so not counted in num_online_cpus()).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) static inline unsigned int num_other_online_cpus(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) unsigned int this_cpu_online = cpu_online(smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) return num_online_cpus() - this_cpu_online;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) void smp_send_stop(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) unsigned long timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) if (num_other_online_cpus()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) cpumask_t mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) cpumask_copy(&mask, cpu_online_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) cpumask_clear_cpu(smp_processor_id(), &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) if (system_state <= SYSTEM_RUNNING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) pr_crit("SMP: stopping secondary CPUs\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) smp_cross_call(&mask, IPI_CPU_STOP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) /* Wait up to one second for other CPUs to stop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) timeout = USEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) while (num_other_online_cpus() && timeout--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) if (num_other_online_cpus())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) cpumask_pr_args(cpu_online_mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) sdei_mask_local_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) #ifdef CONFIG_KEXEC_CORE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) void crash_smp_send_stop(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) static int cpus_stopped;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) cpumask_t mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) unsigned long timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) * This function can be called twice in panic path, but obviously
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) * we execute this only once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) if (cpus_stopped)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) cpus_stopped = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) * If this cpu is the only one alive at this point in time, online or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) * not, there are no stop messages to be sent around, so just back out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) if (num_other_online_cpus() == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) sdei_mask_local_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) cpumask_copy(&mask, cpu_online_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) cpumask_clear_cpu(smp_processor_id(), &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) pr_crit("SMP: stopping secondary CPUs\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) /* Wait up to one second for other CPUs to stop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) timeout = USEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) if (atomic_read(&waiting_for_crash_ipi) > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) cpumask_pr_args(&mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) sdei_mask_local_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) bool smp_crash_stop_failed(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) return (atomic_read(&waiting_for_crash_ipi) > 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) * not supported here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) int setup_profiling_timer(unsigned int multiplier)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) static bool have_cpu_die(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) int any_cpu = raw_smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) const struct cpu_operations *ops = get_cpu_ops(any_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) if (ops && ops->cpu_die)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) bool cpus_are_stuck_in_kernel(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) return !!cpus_stuck_in_kernel || smp_spin_tables;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) int nr_ipi_get(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) return nr_ipi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) EXPORT_SYMBOL_GPL(nr_ipi_get);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) struct irq_desc **ipi_desc_get(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) return ipi_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) EXPORT_SYMBOL_GPL(ipi_desc_get);