Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *  linux/arch/arm/vfp/vfpmodule.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *  Copyright (C) 2004 ARM Limited.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *  Written by Deep Blue Solutions Limited.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/cpu_pm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/hardirq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/notifier.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/user.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <asm/cp15.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <asm/cputype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <asm/system_info.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <asm/thread_notify.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <asm/traps.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <asm/vfp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #include "vfpinstr.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #include "vfp.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * Our undef handlers (in entry.S)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) asmlinkage void vfp_support_entry(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) asmlinkage void vfp_null_entry(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * Dual-use variable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * Used in startup: set to non-zero if VFP checks fail
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * After startup, holds VFP architecture
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) static unsigned int __initdata VFP_arch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * The pointer to the vfpstate structure of the thread which currently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * owns the context held in the VFP hardware, or NULL if the hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * context is invalid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * For UP, this is sufficient to tell which thread owns the VFP context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  * However, for SMP, we also need to check the CPU number stored in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * saved state too to catch migrations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) union vfp_state *vfp_current_hw_state[NR_CPUS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  * Is 'thread's most up to date state stored in this CPUs hardware?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  * Must be called from non-preemptible context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	if (thread->vfpstate.hard.cpu != cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	return vfp_current_hw_state[cpu] == &thread->vfpstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  * Force a reload of the VFP context from the thread structure.  We do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * this by ensuring that access to the VFP hardware is disabled, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	if (vfp_state_in_hw(cpu, thread)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		vfp_current_hw_state[cpu] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	thread->vfpstate.hard.cpu = NR_CPUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * Per-thread VFP initialization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) static void vfp_thread_flush(struct thread_info *thread)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	union vfp_state *vfp = &thread->vfpstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	 * Disable VFP to ensure we initialize it first.  We must ensure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	 * that the modification of vfp_current_hw_state[] and hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	 * disable are done for the same CPU and without preemption.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	 * Do this first to ensure that preemption won't overwrite our
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	 * state saving should access to the VFP be enabled at this point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	cpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	if (vfp_current_hw_state[cpu] == vfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 		vfp_current_hw_state[cpu] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	memset(vfp, 0, sizeof(union vfp_state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	vfp->hard.fpexc = FPEXC_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	vfp->hard.cpu = NR_CPUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) static void vfp_thread_exit(struct thread_info *thread)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	/* release case: Per-thread VFP cleanup. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	union vfp_state *vfp = &thread->vfpstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	unsigned int cpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	if (vfp_current_hw_state[cpu] == vfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		vfp_current_hw_state[cpu] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) static void vfp_thread_copy(struct thread_info *thread)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	struct thread_info *parent = current_thread_info();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	vfp_sync_hwstate(parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	thread->vfpstate = parent->vfpstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	thread->vfpstate.hard.cpu = NR_CPUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)  * When this function is called with the following 'cmd's, the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)  * is true while this function is being run:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)  *  THREAD_NOFTIFY_SWTICH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)  *   - the previously running thread will not be scheduled onto another CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)  *   - the next thread to be run (v) will not be running on another CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)  *   - thread->cpu is the local CPU number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)  *   - not preemptible as we're called in the middle of a thread switch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)  *  THREAD_NOTIFY_FLUSH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)  *   - the thread (v) will be running on the local CPU, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)  *	v === current_thread_info()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)  *   - thread->cpu is the local CPU number at the time it is accessed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)  *	but may change at any time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  *   - we could be preempted if tree preempt rcu is enabled, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  *	it is unsafe to use thread->cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  *  THREAD_NOTIFY_EXIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  *   - we could be preempted if tree preempt rcu is enabled, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  *	it is unsafe to use thread->cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	struct thread_info *thread = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	u32 fpexc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	switch (cmd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	case THREAD_NOTIFY_SWITCH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		fpexc = fmrx(FPEXC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		cpu = thread->cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		 * On SMP, if VFP is enabled, save the old state in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		 * case the thread migrates to a different CPU. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		 * restoring is done lazily.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 		 * Always disable VFP so we can lazily save/restore the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		 * old state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	case THREAD_NOTIFY_FLUSH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		vfp_thread_flush(thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	case THREAD_NOTIFY_EXIT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		vfp_thread_exit(thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	case THREAD_NOTIFY_COPY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		vfp_thread_copy(thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static struct notifier_block vfp_notifier_block = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	.notifier_call	= vfp_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)  * Raise a SIGFPE for the current process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)  * sicode describes the signal being raised.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	 * This is the same as NWFPE, because it's not clear what
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	 * this is used for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	current->thread.error_code = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	current->thread.trap_no = 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	send_sig_fault(SIGFPE, sicode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		       (void __user *)(instruction_pointer(regs) - 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 		       current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) static void vfp_panic(char *reason, u32 inst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	pr_err("VFP: Error: %s\n", reason);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 		fmrx(FPEXC), fmrx(FPSCR), inst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	for (i = 0; i < 32; i += 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)  * Process bitmask of exception conditions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	int si_code = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	if (exceptions == VFP_EXCEPTION_ERROR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		vfp_panic("unhandled bounce", inst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		vfp_raise_sigfpe(FPE_FLTINV, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	 * If any of the status flags are set, update the FPSCR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	 * Comparison instructions always return at least one of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	 * these flags set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	fpscr |= exceptions;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	fmxr(FPSCR, fpscr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) #define RAISE(stat,en,sig)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	if (exceptions & stat && fpscr & en)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 		si_code = sig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	 * These are arranged in priority order, least to highest.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	if (si_code)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		vfp_raise_sigfpe(si_code, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)  * Emulate a VFP instruction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	u32 exceptions = VFP_EXCEPTION_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	if (INST_CPRTDO(inst)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		if (!INST_CPRT(inst)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 			 * CPDO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 			if (vfp_single(inst)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 				exceptions = vfp_single_cpdo(inst, fpscr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 				exceptions = vfp_double_cpdo(inst, fpscr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 			 * A CPRT instruction can not appear in FPINST2, nor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 			 * can it cause an exception.  Therefore, we do not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 			 * have to emulate it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		 * A CPDT instruction can not appear in FPINST2, nor can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 		 * it cause an exception.  Therefore, we do not have to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 		 * emulate it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	return exceptions & ~VFP_NAN_FLAG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)  * Package up a bounce condition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	u32 fpscr, orig_fpscr, fpsid, exceptions;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	 * At this point, FPEXC can have the following configuration:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	 *  EX DEX IXE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	 *  0   1   x   - synchronous exception
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	 *  1   x   0   - asynchronous exception
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	 *                implementation), undefined otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	 * Clear various bits and enable access to the VFP so we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	 * handle the bounce.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	fpsid = fmrx(FPSID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	orig_fpscr = fpscr = fmrx(FPSCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	    && (fpscr & FPSCR_IXE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 		 * Synchronous exception, emulate the trigger instruction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 		goto emulate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	if (fpexc & FPEXC_EX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) #ifndef CONFIG_CPU_FEROCEON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 		 * Asynchronous exception. The instruction is read from FPINST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 		 * and the interrupted instruction has to be restarted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		trigger = fmrx(FPINST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 		regs->ARM_pc -= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	} else if (!(fpexc & FPEXC_DEX)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 		 * Illegal combination of bits. It can be caused by an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 		 * unallocated VFP instruction but with FPSCR.IXE set and not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 		 * on VFP subarch 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 		goto exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	 * Modify fpscr to indicate the number of iterations remaining.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 		u32 len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 		fpscr &= ~FPSCR_LENGTH_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	 * Handle the first FP instruction.  We used to take note of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	 * FPEXC bounce reason, but this appears to be unreliable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	 * Emulate the bounced instruction instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	if (exceptions)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	 * If there isn't a second FP instruction, exit now. Note that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		goto exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	 * The barrier() here prevents fpinst2 being read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	 * before the condition above.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	trigger = fmrx(FPINST2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)  emulate:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	if (exceptions)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)  exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) static void vfp_enable(void *unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	u32 access;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	BUG_ON(preemptible());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	access = get_copro_access();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	 * Enable full access to VFP (cp10 and cp11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) /* Called by platforms on which we want to disable VFP because it may not be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436)  * present on all CPUs within a SMP complex. Needs to be called prior to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437)  * vfp_init().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) void __init vfp_disable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	if (VFP_arch) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 		pr_debug("%s: should be called prior to vfp_init\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	VFP_arch = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) #ifdef CONFIG_CPU_PM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) static int vfp_pm_suspend(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	struct thread_info *ti = current_thread_info();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	u32 fpexc = fmrx(FPEXC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	/* if vfp is on, then save state for resumption */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	if (fpexc & FPEXC_EN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 		pr_debug("%s: saving vfp state\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		vfp_save_state(&ti->vfpstate, fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 		/* disable, just in case */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	} else if (vfp_current_hw_state[ti->cpu]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) #ifndef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		fmxr(FPEXC, fpexc | FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 		fmxr(FPEXC, fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	/* clear any information we had about last context state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	vfp_current_hw_state[ti->cpu] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) static void vfp_pm_resume(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	/* ensure we have access to the vfp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	vfp_enable(NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	/* and disable it to ensure the next usage restores the state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	switch (cmd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	case CPU_PM_ENTER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 		vfp_pm_suspend();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	case CPU_PM_ENTER_FAILED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	case CPU_PM_EXIT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 		vfp_pm_resume();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) static struct notifier_block vfp_cpu_pm_notifier_block = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	.notifier_call = vfp_cpu_pm_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) static void vfp_pm_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) static inline void vfp_pm_init(void) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) #endif /* CONFIG_CPU_PM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514)  * with the hardware state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) void vfp_sync_hwstate(struct thread_info *thread)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	unsigned int cpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	if (vfp_state_in_hw(cpu, thread)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 		u32 fpexc = fmrx(FPEXC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 		 * Save the last VFP state on this CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 		fmxr(FPEXC, fpexc | FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 		fmxr(FPEXC, fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) /* Ensure that the thread reloads the hardware VFP state on the next use. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) void vfp_flush_hwstate(struct thread_info *thread)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	unsigned int cpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	vfp_force_reload(cpu, thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545)  * Save the current VFP state into the provided structures and prepare
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546)  * for entry into a new function (signal handler).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 				    struct user_vfp_exc *ufp_exc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	struct thread_info *thread = current_thread_info();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	/* Ensure that the saved hwstate is up-to-date. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	vfp_sync_hwstate(thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	 * Copy the floating point registers. There can be unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	 * registers see asm/hwcap.h for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	 * Copy the status and control register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	ufp->fpscr = hwstate->fpscr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	 * Copy the exception registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	ufp_exc->fpexc = hwstate->fpexc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	ufp_exc->fpinst = hwstate->fpinst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	ufp_exc->fpinst2 = hwstate->fpinst2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	/* Ensure that VFP is disabled. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	vfp_flush_hwstate(thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	 * As per the PCS, clear the length and stride bits for function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	 * entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) /* Sanitise and restore the current VFP state from the provided structures. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	struct thread_info *thread = current_thread_info();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	unsigned long fpexc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	/* Disable VFP to avoid corrupting the new thread state. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	vfp_flush_hwstate(thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	 * Copy the floating point registers. There can be unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	 * registers see asm/hwcap.h for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	 * Copy the status and control register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	hwstate->fpscr = ufp->fpscr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	 * Sanitise and restore the exception registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	fpexc = ufp_exc->fpexc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	/* Ensure the VFP is enabled. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	fpexc |= FPEXC_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	hwstate->fpexc = fpexc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	hwstate->fpinst = ufp_exc->fpinst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	hwstate->fpinst2 = ufp_exc->fpinst2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625)  * VFP hardware can lose all context when a CPU goes offline.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)  * As we will be running in SMP mode with CPU hotplug, we will save the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627)  * hardware state at every thread switch.  We clear our held state when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628)  * a CPU has been killed, indicating that the VFP hardware doesn't contain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)  * a threads VFP state.  When a CPU starts up, we re-enable access to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630)  * VFP hardware. The callbacks below are called on the CPU which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631)  * is being offlined/onlined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) static int vfp_dying_cpu(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	vfp_current_hw_state[cpu] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) static int vfp_starting_cpu(unsigned int unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	vfp_enable(NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) #ifdef CONFIG_KERNEL_MODE_NEON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	 * If we reach this point, a floating point exception has been raised
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 	 * time, it means a VFP instruction has been issued that requires
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 	 * software assistance to complete, something which is not currently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 	 * supported in kernel mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 	 * If the NEON/VFP unit was disabled, and the location pointed to below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 	 * is properly preceded by a call to kernel_neon_begin(), something has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 	 * caused the task to be scheduled out and back in again. In this case,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	 * be helpful in localizing the problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	if (fmrx(FPEXC) & FPEXC_EN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 	pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) static struct undef_hook vfp_kmode_exception_hook[] = {{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 	.instr_mask	= 0xfe000000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 	.instr_val	= 0xf2000000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	.cpsr_val	= SVC_MODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	.fn		= vfp_kmode_exception,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	.instr_mask	= 0xff100000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 	.instr_val	= 0xf4000000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 	.cpsr_val	= SVC_MODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 	.fn		= vfp_kmode_exception,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	.instr_mask	= 0xef000000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 	.instr_val	= 0xef000000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 	.cpsr_val	= SVC_MODE | PSR_T_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 	.fn		= vfp_kmode_exception,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 	.instr_mask	= 0xff100000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	.instr_val	= 0xf9000000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	.cpsr_val	= SVC_MODE | PSR_T_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 	.fn		= vfp_kmode_exception,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	.instr_mask	= 0x0c000e00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	.instr_val	= 0x0c000a00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 	.cpsr_mask	= MODE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	.cpsr_val	= SVC_MODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 	.fn		= vfp_kmode_exception,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) }};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) static int __init vfp_kmode_exception_hook_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 		register_undef_hook(&vfp_kmode_exception_hook[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) subsys_initcall(vfp_kmode_exception_hook_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712)  * Kernel-side NEON support functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) void kernel_neon_begin(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	struct thread_info *thread = current_thread_info();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	u32 fpexc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 	 * Kernel mode NEON is only allowed outside of interrupt context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 	 * with preemption disabled. This will make sure that the kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 	 * mode NEON register contents never need to be preserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 	BUG_ON(in_interrupt());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	cpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 	fpexc = fmrx(FPEXC) | FPEXC_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	fmxr(FPEXC, fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 	 * Save the userland NEON/VFP state. Under UP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	 * the owner could be a task other than 'current'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 	if (vfp_state_in_hw(cpu, thread))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 		vfp_save_state(&thread->vfpstate, fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) #ifndef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 	else if (vfp_current_hw_state[cpu] != NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	vfp_current_hw_state[cpu] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) EXPORT_SYMBOL(kernel_neon_begin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) void kernel_neon_end(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 	/* Disable the NEON/VFP unit. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) EXPORT_SYMBOL(kernel_neon_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) #endif /* CONFIG_KERNEL_MODE_NEON */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 	VFP_arch = UINT_MAX;	/* mark as not present */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 	regs->ARM_pc += 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) static struct undef_hook vfp_detect_hook __initdata = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	.instr_mask	= 0x0c000e00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 	.instr_val	= 0x0c000a00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 	.cpsr_mask	= MODE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 	.cpsr_val	= SVC_MODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 	.fn		= vfp_detect,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771)  * VFP support code initialisation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) static int __init vfp_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 	unsigned int vfpsid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 	unsigned int cpu_arch = cpu_architecture();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 	 * Enable the access to the VFP on all online CPUs so the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 	 * following test on FPSID will succeed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 	if (cpu_arch >= CPU_ARCH_ARMv6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 		on_each_cpu(vfp_enable, NULL, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 	 * First check that there is a VFP that we can use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 	 * The handler is already setup to just log calls, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 	 * we just need to read the VFPSID register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 	register_undef_hook(&vfp_detect_hook);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 	barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 	vfpsid = fmrx(FPSID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 	barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 	unregister_undef_hook(&vfp_detect_hook);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 	vfp_vector = vfp_null_entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 	pr_info("VFP support v0.3: ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 	if (VFP_arch) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 		pr_cont("not present\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 	/* Extract the architecture on CPUID scheme */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 		VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 		VFP_arch >>= FPSID_ARCH_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 		 * Check for the presence of the Advanced SIMD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 		 * load/store instructions, integer and single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 		 * precision floating point operations. Only check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 		 * for NEON if the hardware has the MVFR registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 		if (IS_ENABLED(CONFIG_NEON) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 		   (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 			elf_hwcap |= HWCAP_NEON;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) 		if (IS_ENABLED(CONFIG_VFPv3)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 			u32 mvfr0 = fmrx(MVFR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 			if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 			    ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 				elf_hwcap |= HWCAP_VFPv3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 				 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 				 * this configuration only have 16 x 64bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 				 * registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 				if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 					/* also v4-D16 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 					elf_hwcap |= HWCAP_VFPv3D16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 				else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 					elf_hwcap |= HWCAP_VFPD32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 				elf_hwcap |= HWCAP_VFPv4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 	/* Extract the architecture version on pre-cpuid scheme */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 		if (vfpsid & FPSID_NODOUBLE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 			pr_cont("no double precision support\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 	cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 				  "arm/vfp:starting", vfp_starting_cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 				  vfp_dying_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 	vfp_vector = vfp_support_entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 	thread_register_notifier(&vfp_notifier_block);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 	vfp_pm_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 	 * We detected VFP, and the support code is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 	 * in place; report VFP support to userspace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 	elf_hwcap |= HWCAP_VFP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 	pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 		(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 		VFP_arch,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 		(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 		(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 		(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) core_initcall(vfp_init);