^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* SPDX-License-Identifier: GPL-2.0-only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * linux/arch/arm/vfp/vfp.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 2004 ARM Limited.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Written by Deep Blue Solutions Limited.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) if (shift) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) if (shift < 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) val = val >> shift | ((val << (32 - shift)) != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) val = val != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) return val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) if (shift) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) if (shift < 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) val = val >> shift | ((val << (64 - shift)) != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) val = val != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) return val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) static inline u32 vfp_hi64to32jamming(u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) u32 v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) asm(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) "movcc %0, %R1\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) "orrcs %0, %R1, #1"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) : "=r" (v) : "r" (val) : "cc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) return v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) asm( "adds %Q0, %Q2, %Q4\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) "adcs %R0, %R2, %R4\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) "adcs %Q1, %Q3, %Q5\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) "adc %R1, %R3, %R5"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) : "=r" (nl), "=r" (nh)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) : "cc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) *resh = nh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) *resl = nl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) asm( "subs %Q0, %Q2, %Q4\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) "sbcs %R0, %R2, %R4\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) "sbcs %Q1, %Q3, %Q5\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) "sbc %R1, %R3, %R5\n\t"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) : "=r" (nl), "=r" (nh)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) : "cc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) *resh = nh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) *resl = nl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) u32 nh, nl, mh, ml;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) u64 rh, rma, rmb, rl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) nl = n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) ml = m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) rl = (u64)nl * ml;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) nh = n >> 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) rma = (u64)nh * ml;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) mh = m >> 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) rmb = (u64)nl * mh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) rma += rmb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) rh = (u64)nh * mh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) rma <<= 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) rl += rma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) rh += (rl < rma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) *resl = rl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) *resh = rh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) static inline void shift64left(u64 *resh, u64 *resl, u64 n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) *resh = n >> 63;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) *resl = n << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) static inline u64 vfp_hi64multiply64(u64 n, u64 m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) u64 rh, rl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) mul64to128(&rh, &rl, n, m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) return rh | (rl != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) u64 mh, ml, remh, reml, termh, terml, z;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) if (nh >= m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) return ~0ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) mh = m >> 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) if (mh << 32 <= nh) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) z = 0xffffffff00000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) z = nh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) do_div(z, mh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) z <<= 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) mul64to128(&termh, &terml, m, z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) sub128(&remh, &reml, nh, nl, termh, terml);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) ml = m << 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) while ((s64)remh < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) z -= 0x100000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) add128(&remh, &reml, remh, reml, mh, ml);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) remh = (remh << 32) | (reml >> 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) if (mh << 32 <= remh) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) z |= 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) do_div(remh, mh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) z |= remh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) return z;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) * Operations on unpacked elements
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) #define vfp_sign_negate(sign) (sign ^ 0x8000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) * Single-precision
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) struct vfp_single {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) s16 exponent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) u16 sign;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) u32 significand;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) asmlinkage s32 vfp_get_float(unsigned int reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) asmlinkage void vfp_put_float(s32 val, unsigned int reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) * which are not propagated to the float upon packing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) #define VFP_SINGLE_MANTISSA_BITS (23)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) #define VFP_SINGLE_EXPONENT_BITS (8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) * The bit in an unpacked float which indicates that it is a quiet NaN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) * Operations on packed single-precision numbers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) #define vfp_single_packed_sign(v) ((v) & 0x80000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) #define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) #define vfp_single_packed_abs(v) ((v) & ~0x80000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) * Unpack a single-precision float. Note that this returns the magnitude
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) * of the single-precision float mantissa with the 1. if necessary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) * aligned to bit 30.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) u32 significand;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) s->sign = vfp_single_packed_sign(val) >> 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) s->exponent = vfp_single_packed_exponent(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) significand = (u32) val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) if (s->exponent && s->exponent != 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) significand |= 0x40000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) s->significand = significand;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * Re-pack a single-precision float. This assumes that the float is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) * already normalised such that the MSB is bit 30, _not_ bit 31.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static inline s32 vfp_single_pack(struct vfp_single *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) val = (s->sign << 16) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) (s->significand >> VFP_SINGLE_LOW_BITS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) return (s32)val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) #define VFP_NUMBER (1<<0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) #define VFP_ZERO (1<<1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) #define VFP_DENORMAL (1<<2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) #define VFP_INFINITY (1<<3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) #define VFP_NAN (1<<4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) #define VFP_NAN_SIGNAL (1<<5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) #define VFP_QNAN (VFP_NAN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) static inline int vfp_single_type(struct vfp_single *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) int type = VFP_NUMBER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) if (s->exponent == 255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) if (s->significand == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) type = VFP_INFINITY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) type = VFP_QNAN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) type = VFP_SNAN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) } else if (s->exponent == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) if (s->significand == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) type |= VFP_ZERO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) type |= VFP_DENORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) return type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) #ifndef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) * Double-precision
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) struct vfp_double {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) s16 exponent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) u16 sign;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) u64 significand;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) * VFP_REG_ZERO is a special register number for vfp_get_double
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) * which returns (double)0.0. This is useful for the compare with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) * zero instructions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) #ifdef CONFIG_VFPv3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) #define VFP_REG_ZERO 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) #define VFP_REG_ZERO 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) asmlinkage u64 vfp_get_double(unsigned int reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) asmlinkage void vfp_put_double(u64 val, unsigned int reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) #define VFP_DOUBLE_MANTISSA_BITS (52)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) #define VFP_DOUBLE_EXPONENT_BITS (11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) * The bit in an unpacked double which indicates that it is a quiet NaN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) * Operations on packed single-precision numbers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) #define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) * Unpack a double-precision float. Note that this returns the magnitude
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) * of the double-precision float mantissa with the 1. if necessary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) * aligned to bit 62.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) u64 significand;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) s->sign = vfp_double_packed_sign(val) >> 48;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) s->exponent = vfp_double_packed_exponent(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) significand = (u64) val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) if (s->exponent && s->exponent != 2047)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) significand |= (1ULL << 62);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) s->significand = significand;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) * Re-pack a double-precision float. This assumes that the float is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) * already normalised such that the MSB is bit 30, _not_ bit 31.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) static inline s64 vfp_double_pack(struct vfp_double *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) u64 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) val = ((u64)s->sign << 48) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) (s->significand >> VFP_DOUBLE_LOW_BITS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) return (s64)val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) static inline int vfp_double_type(struct vfp_double *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) int type = VFP_NUMBER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) if (s->exponent == 2047) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) if (s->significand == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) type = VFP_INFINITY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) type = VFP_QNAN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) type = VFP_SNAN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) } else if (s->exponent == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) if (s->significand == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) type |= VFP_ZERO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) type |= VFP_DENORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) return type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) * A special flag to tell the normalisation code not to normalise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) #define VFP_NAN_FLAG 0x100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) * A bit pattern used to indicate the initial (unset) value of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) * exception mask, in case nothing handles an instruction. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) * doesn't include the NAN flag, which get masked out before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) * we check for an error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) * A flag to tell vfp instruction type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) * OP_SCALAR - this operation always operates in scalar mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) * OP_SD - the instruction exceptionally writes to a single precision result.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) * OP_DD - the instruction exceptionally writes to a double precision result.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) * OP_SM - the instruction exceptionally reads from a single precision operand.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) #define OP_SCALAR (1 << 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) #define OP_SD (1 << 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) #define OP_DD (1 << 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) #define OP_SM (1 << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) struct op {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) u32 flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) asmlinkage void vfp_save_state(void *location, u32 fpexc);