Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)     NetWinder Floating Point Emulator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)     (c) Rebel.COM, 1998,1999
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)     (c) Philip Blundell, 2001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)     Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include "fpa11.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include "softfloat.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include "fpopcode.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) float32 float32_exp(float32 Fm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) float32 float32_ln(float32 Fm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) float32 float32_sin(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) float32 float32_cos(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) float32 float32_arcsin(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) float32 float32_arctan(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) float32 float32_log(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) float32 float32_tan(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) float32 float32_arccos(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) float32 float32_pow(float32 rFn, float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) float32 float32_pol(float32 rFn, float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) static float32 float32_rsf(struct roundingData *roundData, float32 rFn, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	return float32_sub(roundData, rFm, rFn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) static float32 float32_rdv(struct roundingData *roundData, float32 rFn, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	return float32_div(roundData, rFm, rFn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) static float32 (*const dyadic_single[16])(struct roundingData *, float32 rFn, float32 rFm) = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	[ADF_CODE >> 20] = float32_add,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	[MUF_CODE >> 20] = float32_mul,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	[SUF_CODE >> 20] = float32_sub,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	[RSF_CODE >> 20] = float32_rsf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	[DVF_CODE >> 20] = float32_div,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	[RDF_CODE >> 20] = float32_rdv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	[RMF_CODE >> 20] = float32_rem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	[FML_CODE >> 20] = float32_mul,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	[FDV_CODE >> 20] = float32_div,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	[FRD_CODE >> 20] = float32_rdv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) static float32 float32_mvf(struct roundingData *roundData, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	return rFm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) static float32 float32_mnf(struct roundingData *roundData, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	return rFm ^ 0x80000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) static float32 float32_abs(struct roundingData *roundData, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	return rFm & 0x7fffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) static float32 (*const monadic_single[16])(struct roundingData*, float32 rFm) = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	[MVF_CODE >> 20] = float32_mvf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	[MNF_CODE >> 20] = float32_mnf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	[ABS_CODE >> 20] = float32_abs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	[RND_CODE >> 20] = float32_round_to_int,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	[URD_CODE >> 20] = float32_round_to_int,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	[SQT_CODE >> 20] = float32_sqrt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	[NRM_CODE >> 20] = float32_mvf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) unsigned int SingleCPDO(struct roundingData *roundData, const unsigned int opcode, FPREG * rFd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	FPA11 *fpa11 = GET_FPA11();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	float32 rFm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	unsigned int Fm, opc_mask_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	Fm = getFm(opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	if (CONSTANT_FM(opcode)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		rFm = getSingleConstant(Fm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	} else if (fpa11->fType[Fm] == typeSingle) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		rFm = fpa11->fpreg[Fm].fSingle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	opc_mask_shift = (opcode & MASK_ARITHMETIC_OPCODE) >> 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	if (!MONADIC_INSTRUCTION(opcode)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		unsigned int Fn = getFn(opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 		float32 rFn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		if (fpa11->fType[Fn] == typeSingle &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		    dyadic_single[opc_mask_shift]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 			rFn = fpa11->fpreg[Fn].fSingle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 			rFd->fSingle = dyadic_single[opc_mask_shift](roundData, rFn, rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		if (monadic_single[opc_mask_shift]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 			rFd->fSingle = monadic_single[opc_mask_shift](roundData, rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }