^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) NetWinder Floating Point Emulator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) (c) Rebel.COM, 1998,1999
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) (c) Philip Blundell, 2001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include "fpa11.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include "softfloat.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include "fpopcode.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) float32 float32_exp(float32 Fm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) float32 float32_ln(float32 Fm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) float32 float32_sin(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) float32 float32_cos(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) float32 float32_arcsin(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) float32 float32_arctan(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) float32 float32_log(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) float32 float32_tan(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) float32 float32_arccos(float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) float32 float32_pow(float32 rFn, float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) float32 float32_pol(float32 rFn, float32 rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) static float32 float32_rsf(struct roundingData *roundData, float32 rFn, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) return float32_sub(roundData, rFm, rFn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) static float32 float32_rdv(struct roundingData *roundData, float32 rFn, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) return float32_div(roundData, rFm, rFn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) static float32 (*const dyadic_single[16])(struct roundingData *, float32 rFn, float32 rFm) = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) [ADF_CODE >> 20] = float32_add,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) [MUF_CODE >> 20] = float32_mul,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) [SUF_CODE >> 20] = float32_sub,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) [RSF_CODE >> 20] = float32_rsf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) [DVF_CODE >> 20] = float32_div,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) [RDF_CODE >> 20] = float32_rdv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) [RMF_CODE >> 20] = float32_rem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) [FML_CODE >> 20] = float32_mul,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) [FDV_CODE >> 20] = float32_div,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) [FRD_CODE >> 20] = float32_rdv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) static float32 float32_mvf(struct roundingData *roundData, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) return rFm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) static float32 float32_mnf(struct roundingData *roundData, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) return rFm ^ 0x80000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) static float32 float32_abs(struct roundingData *roundData, float32 rFm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) return rFm & 0x7fffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) static float32 (*const monadic_single[16])(struct roundingData*, float32 rFm) = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) [MVF_CODE >> 20] = float32_mvf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) [MNF_CODE >> 20] = float32_mnf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) [ABS_CODE >> 20] = float32_abs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) [RND_CODE >> 20] = float32_round_to_int,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) [URD_CODE >> 20] = float32_round_to_int,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) [SQT_CODE >> 20] = float32_sqrt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) [NRM_CODE >> 20] = float32_mvf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) unsigned int SingleCPDO(struct roundingData *roundData, const unsigned int opcode, FPREG * rFd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) FPA11 *fpa11 = GET_FPA11();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) float32 rFm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) unsigned int Fm, opc_mask_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) Fm = getFm(opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) if (CONSTANT_FM(opcode)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) rFm = getSingleConstant(Fm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) } else if (fpa11->fType[Fm] == typeSingle) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) rFm = fpa11->fpreg[Fm].fSingle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) opc_mask_shift = (opcode & MASK_ARITHMETIC_OPCODE) >> 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) if (!MONADIC_INSTRUCTION(opcode)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) unsigned int Fn = getFn(opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) float32 rFn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) if (fpa11->fType[Fn] == typeSingle &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) dyadic_single[opc_mask_shift]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) rFn = fpa11->fpreg[Fn].fSingle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) rFd->fSingle = dyadic_single[opc_mask_shift](roundData, rFn, rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) if (monadic_single[opc_mask_shift]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) rFd->fSingle = monadic_single[opc_mask_shift](roundData, rFm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }