Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * Versatile Express Serial Power Controller (SPC) support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Copyright (C) 2013 ARM Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *          Achin Gupta           <achin.gupta@arm.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * This program is free software; you can redistribute it and/or modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * it under the terms of the GNU General Public License version 2 as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * published by the Free Software Foundation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * kind, whether express or implied; without even the implied warranty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * GNU General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/clk-provider.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/clkdev.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <linux/pm_opp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #include <linux/semaphore.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #include "spc.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define SPCLOG "vexpress-spc: "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define PERF_LVL_A15		0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define PERF_REQ_A15		0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define PERF_LVL_A7		0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define PERF_REQ_A7		0x0c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define COMMS			0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define COMMS_REQ		0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define PWC_STATUS		0x18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define PWC_FLAG		0x1c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) /* SPC wake-up IRQs status and mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define WAKE_INT_MASK		0x24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define WAKE_INT_RAW		0x28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define WAKE_INT_STAT		0x2c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) /* SPC power down registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define A15_PWRDN_EN		0x30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define A7_PWRDN_EN		0x34
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) /* SPC per-CPU mailboxes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define A15_BX_ADDR0		0x68
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define A7_BX_ADDR0		0x78
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) /* SPC CPU/cluster reset statue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define STANDBYWFI_STAT		0x3c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define STANDBYWFI_STAT_A15_CPU_MASK(cpu)	(1 << (cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define STANDBYWFI_STAT_A7_CPU_MASK(cpu)	(1 << (3 + (cpu)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) /* SPC system config interface registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define SYSCFG_WDATA		0x70
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define SYSCFG_RDATA		0x74
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) /* A15/A7 OPP virtual register base */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define A15_PERFVAL_BASE	0xC10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) #define A7_PERFVAL_BASE		0xC30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) /* Config interface control bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define SYSCFG_START		BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define SYSCFG_SCC		(6 << 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #define SYSCFG_STAT		(14 << 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) /* wake-up interrupt masks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define GBL_WAKEUP_INT_MSK	(0x3 << 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) /* TC2 static dual-cluster configuration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define MAX_CLUSTERS		2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  * operation, the operation could start just before jiffie is about
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) #define TIMEOUT_US	20000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) #define MAX_OPPS	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) #define CA15_DVFS	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) #define CA7_DVFS	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) #define SPC_SYS_CFG	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define STAT_COMPLETE(type)	((1 << 0) << (type << 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #define STAT_ERR(type)		((1 << 1) << (type << 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) #define RESPONSE_MASK(type)	(STAT_COMPLETE(type) | STAT_ERR(type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) struct ve_spc_opp {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	unsigned long u_volt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) struct ve_spc_drvdata {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	void __iomem *baseaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	 * A15s cluster identifier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	 * It corresponds to A15 processors MPIDR[15:8] bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	u32 a15_clusid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	uint32_t cur_rsp_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	uint32_t cur_rsp_stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	struct semaphore sem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	struct completion done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	struct ve_spc_opp *opps[MAX_CLUSTERS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	int num_opps[MAX_CLUSTERS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) static struct ve_spc_drvdata *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) static inline bool cluster_is_a15(u32 cluster)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	return cluster == info->a15_clusid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)  * ve_spc_global_wakeup_irq()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)  * Function to set/clear global wakeup IRQs. Not protected by locking since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)  * it might be used in code paths where normal cacheable locks are not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)  * working. Locking must be provided by the caller to ensure atomicity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)  * @set: if true, global wake-up IRQs are set, if false they are cleared
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) void ve_spc_global_wakeup_irq(bool set)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	if (set)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		reg |= GBL_WAKEUP_INT_MSK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		reg &= ~GBL_WAKEUP_INT_MSK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)  * ve_spc_cpu_wakeup_irq()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)  * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)  * it might be used in code paths where normal cacheable locks are not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)  * working. Locking must be provided by the caller to ensure atomicity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  * @set: if true, wake-up IRQs are set, if false they are cleared
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	u32 mask, reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	if (cluster >= MAX_CLUSTERS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	mask = BIT(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	if (!cluster_is_a15(cluster))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		mask <<= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	if (set)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		reg |= mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		reg &= ~mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)  * ve_spc_set_resume_addr() - set the jump address used for warm boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)  * @addr: physical resume address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	void __iomem *baseaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	if (cluster >= MAX_CLUSTERS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	if (cluster_is_a15(cluster))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	writel_relaxed(addr, baseaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)  * ve_spc_powerdown()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)  * Function to enable/disable cluster powerdown. Not protected by locking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)  * since it might be used in code paths where normal cacheable locks are not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)  * working. Locking must be provided by the caller to ensure atomicity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)  * @enable: if true enables powerdown, if false disables it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) void ve_spc_powerdown(u32 cluster, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	u32 pwdrn_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	if (cluster >= MAX_CLUSTERS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	writel_relaxed(enable, info->baseaddr + pwdrn_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	return cluster_is_a15(cluster) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 		  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)  * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)  * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)  * @return: non-zero if and only if the specified CPU is in WFI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)  * Take care when interpreting the result of this function: a CPU might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)  * be in WFI temporarily due to idle, and is not necessarily safely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)  * parked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	u32 mask = standbywfi_cpu_mask(cpu, cluster);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	if (cluster >= MAX_CLUSTERS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		 __func__, STANDBYWFI_STAT, ret, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	return ret & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) static int ve_spc_get_performance(int cluster, u32 *freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	struct ve_spc_opp *opps = info->opps[cluster];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	u32 perf_cfg_reg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	u32 perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	if (perf >= info->num_opps[cluster])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	opps += perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	*freq = opps->freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) /* find closest match to given frequency in OPP table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) static int ve_spc_round_performance(int cluster, u32 freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	int idx, max_opp = info->num_opps[cluster];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	struct ve_spc_opp *opps = info->opps[cluster];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	u32 fmin = 0, fmax = ~0, ftmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	freq /= 1000; /* OPP entries in kHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	for (idx = 0; idx < max_opp; idx++, opps++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		ftmp = opps->freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 		if (ftmp >= freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 			if (ftmp <= fmax)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 				fmax = ftmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 			if (ftmp >= fmin)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 				fmin = ftmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	if (fmax != ~0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 		return fmax * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		return fmin * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) static int ve_spc_find_performance_index(int cluster, u32 freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	int idx, max_opp = info->num_opps[cluster];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	struct ve_spc_opp *opps = info->opps[cluster];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	for (idx = 0; idx < max_opp; idx++, opps++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		if (opps->freq == freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	return (idx == max_opp) ? -EINVAL : idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) static int ve_spc_waitforcompletion(int req_type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	int ret = wait_for_completion_interruptible_timeout(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 			&info->done, usecs_to_jiffies(TIMEOUT_US));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	if (ret == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 		ret = -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	else if (ret > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) static int ve_spc_set_performance(int cluster, u32 freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	u32 perf_cfg_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	int ret, perf, req_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	if (cluster_is_a15(cluster)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		req_type = CA15_DVFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		perf_cfg_reg = PERF_LVL_A15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		req_type = CA7_DVFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 		perf_cfg_reg = PERF_LVL_A7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	perf = ve_spc_find_performance_index(cluster, freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	if (perf < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 		return perf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		return -ETIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	init_completion(&info->done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	info->cur_rsp_mask = RESPONSE_MASK(req_type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	writel(perf, info->baseaddr + perf_cfg_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	ret = ve_spc_waitforcompletion(req_type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	info->cur_rsp_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	up(&info->sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 		return -ETIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	init_completion(&info->done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	/* Set the control value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	if (ret == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 		*data = readl(info->baseaddr + SYSCFG_RDATA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	info->cur_rsp_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	up(&info->sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) static irqreturn_t ve_spc_irq_handler(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	struct ve_spc_drvdata *drv_data = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	if (info->cur_rsp_mask & status) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 		info->cur_rsp_stat = status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 		complete(&drv_data->done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)  *  +--------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)  *  | 31      20 | 19        0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)  *  +--------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)  *  |   m_volt   |  freq(kHz)  |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)  *  +--------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) #define MULT_FACTOR	20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) #define VOLT_SHIFT	20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) #define FREQ_MASK	(0xFFFFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) static int ve_spc_populate_opps(uint32_t cluster)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	uint32_t data = 0, off, ret, idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	struct ve_spc_opp *opps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	opps = kcalloc(MAX_OPPS, sizeof(*opps), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	if (!opps)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	info->opps[cluster] = opps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 		if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 			opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 			opps->u_volt = (data >> VOLT_SHIFT) * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	info->num_opps[cluster] = idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) static int ve_init_opp_table(struct device *cpu_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	int cluster;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	int idx, ret = 0, max_opp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	struct ve_spc_opp *opps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	cluster = topology_physical_package_id(cpu_dev->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	cluster = cluster < 0 ? 0 : cluster;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	max_opp = info->num_opps[cluster];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	opps = info->opps[cluster];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	for (idx = 0; idx < max_opp; idx++, opps++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 		ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 			dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 				 opps->freq, opps->u_volt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	info = kzalloc(sizeof(*info), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	if (!info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	info->baseaddr = baseaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	info->a15_clusid = a15_clusid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	if (irq <= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		pr_err(SPCLOG "Invalid IRQ %d\n", irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 		kfree(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	init_completion(&info->done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	readl_relaxed(info->baseaddr + PWC_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 				| IRQF_ONESHOT, "vexpress-spc", info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 		pr_err(SPCLOG "IRQ %d request failed\n", irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 		kfree(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	sema_init(&info->sem, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	 * Multi-cluster systems may need this data when non-coherent, during
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	 * cluster power-up/power-down. Make sure driver info reaches main
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	 * memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	sync_cache_w(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	sync_cache_w(&info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) struct clk_spc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	int cluster;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) static unsigned long spc_recalc_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	struct clk_spc *spc = to_clk_spc(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	u32 freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	if (ve_spc_get_performance(spc->cluster, &freq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	return freq * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		unsigned long *parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	struct clk_spc *spc = to_clk_spc(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	return ve_spc_round_performance(spc->cluster, drate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 		unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	struct clk_spc *spc = to_clk_spc(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	return ve_spc_set_performance(spc->cluster, rate / 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) static struct clk_ops clk_spc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	.recalc_rate = spc_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	.round_rate = spc_round_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	.set_rate = spc_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) static struct clk *ve_spc_clk_register(struct device *cpu_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	struct clk_init_data init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	struct clk_spc *spc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	spc = kzalloc(sizeof(*spc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	if (!spc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	spc->hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	spc->cluster = topology_physical_package_id(cpu_dev->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	init.name = dev_name(cpu_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	init.ops = &clk_spc_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	init.flags = CLK_GET_RATE_NOCACHE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 	init.num_parents = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	return devm_clk_register(cpu_dev, &spc->hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) static int __init ve_spc_clk_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	int cpu, cluster;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	bool init_opp_table[MAX_CLUSTERS] = { false };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	if (!info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 		return 0; /* Continue only if SPC is initialised */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 		pr_err("failed to build OPP table\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 		struct device *cpu_dev = get_cpu_device(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		if (!cpu_dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 			pr_warn("failed to get cpu%d device\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		clk = ve_spc_clk_register(cpu_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		if (IS_ERR(clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 			pr_warn("failed to register cpu%d clock\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 			pr_warn("failed to register cpu%d clock lookup\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 		cluster = topology_physical_package_id(cpu_dev->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 		if (init_opp_table[cluster])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 		if (ve_init_opp_table(cpu_dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 			pr_warn("failed to initialise cpu%d opp table\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 		else if (dev_pm_opp_set_sharing_cpus(cpu_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 			 topology_core_cpumask(cpu_dev->id)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 			pr_warn("failed to mark OPPs shared for cpu%d\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 			init_opp_table[cluster] = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) device_initcall(ve_spc_clk_init);