Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * OMAP Voltage Controller (VC) interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Copyright (C) 2011 Texas Instruments, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * This file is licensed under the terms of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * License version 2. This program is licensed "as is" without any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * warranty of any kind, whether express or implied.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/bug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <asm/div64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include "iomap.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include "soc.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include "voltage.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include "vc.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include "prm-regbits-34xx.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include "prm-regbits-44xx.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include "prm44xx.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include "pm.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include "scrm44xx.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include "control.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define OMAP4430_VDD_IVA_I2C_DISABLE		BIT(14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define OMAP4430_VDD_MPU_I2C_DISABLE		BIT(13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define OMAP4430_VDD_CORE_I2C_DISABLE		BIT(12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define OMAP4430_VDD_IVA_PRESENCE		BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define OMAP4430_VDD_MPU_PRESENCE		BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define OMAP4430_AUTO_CTRL_VDD_IVA(x)		((x) << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define OMAP4430_AUTO_CTRL_VDD_MPU(x)		((x) << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define OMAP4430_AUTO_CTRL_VDD_CORE(x)		((x) << 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define OMAP4430_AUTO_CTRL_VDD_RET		2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define OMAP4430_VDD_I2C_DISABLE_MASK	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	(OMAP4430_VDD_IVA_I2C_DISABLE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	 OMAP4430_VDD_MPU_I2C_DISABLE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	 OMAP4430_VDD_CORE_I2C_DISABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define OMAP4_VDD_DEFAULT_VAL	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	(OMAP4430_VDD_I2C_DISABLE_MASK | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	 OMAP4430_VDD_IVA_PRESENCE | OMAP4430_VDD_MPU_PRESENCE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	 OMAP4430_AUTO_CTRL_VDD_IVA(OMAP4430_AUTO_CTRL_VDD_RET) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	 OMAP4430_AUTO_CTRL_VDD_MPU(OMAP4430_AUTO_CTRL_VDD_RET) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	 OMAP4430_AUTO_CTRL_VDD_CORE(OMAP4430_AUTO_CTRL_VDD_RET))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define OMAP4_VDD_RET_VAL	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	(OMAP4_VDD_DEFAULT_VAL & ~OMAP4430_VDD_I2C_DISABLE_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  * @sa: bit for slave address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * @rav: bit for voltage configuration register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  * @rac: bit for command configuration register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  * @racen: enable bit for RAC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  * @cmd: bit for command value set selection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  * Channel configuration bits, common for OMAP3+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  * OMAP3 register: PRM_VC_CH_CONF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * OMAP4 register: PRM_VC_CFG_CHANNEL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) struct omap_vc_channel_cfg {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	u8 sa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	u8 rav;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	u8 rac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	u8 racen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	u8 cmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) static struct omap_vc_channel_cfg vc_default_channel_cfg = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	.sa    = BIT(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	.rav   = BIT(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	.rac   = BIT(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	.racen = BIT(3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	.cmd   = BIT(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  * On OMAP3+, all VC channels have the above default bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * configuration, except the OMAP4 MPU channel.  This appears
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * to be a freak accident as every other VC channel has the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  * default configuration, thus creating a mutant channel config.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	.sa    = BIT(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	.rav   = BIT(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	.rac   = BIT(3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	.racen = BIT(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	.cmd   = BIT(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) static struct omap_vc_channel_cfg *vc_cfg_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) static u32 sr_i2c_pcb_length = 63;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define CFG_CHANNEL_MASK 0x1f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)  * omap_vc_config_channel - configure VC channel to PMIC mappings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  * @voltdm: pointer to voltagdomain defining the desired VC channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  * Configures the VC channel to PMIC mappings for the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)  * PMIC settings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  * - i2c slave address (SA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)  * - voltage configuration address (RAV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  * - command configuration address (RAC) and enable bit (RACEN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  * - command values for ON, ONLP, RET and OFF (CMD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  * This function currently only allows flexible configuration of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)  * non-default channel.  Starting with OMAP4, there are more than 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)  * channels, with one defined as the default (on OMAP4, it's MPU.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)  * Only the non-default channel can be configured.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) static int omap_vc_config_channel(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	struct omap_vc_channel *vc = voltdm->vc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	 * For default channel, the only configurable bit is RACEN.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	 * All others must stay at zero (see function comment above.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		vc->cfg_channel &= vc_cfg_bits->racen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		    vc->cfg_channel << vc->cfg_channel_sa_shift,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		    vc->cfg_channel_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) /* Voltage scale and accessory APIs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) int omap_vc_pre_scale(struct voltagedomain *voltdm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 		      unsigned long target_volt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		      u8 *target_vsel, u8 *current_vsel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	struct omap_vc_channel *vc = voltdm->vc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	u32 vc_cmdval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	/* Check if sufficient pmic info is available for this vdd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	if (!voltdm->pmic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 			__func__, voltdm->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	if (!voltdm->pmic->uv_to_vsel) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 		pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		       __func__, voltdm->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 		return -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	if (!voltdm->read || !voltdm->write) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 			__func__, voltdm->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	*current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	/* Setting the ON voltage to the new target voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	vc_cmdval = voltdm->read(vc->cmdval_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	vc_cmdval &= ~vc->common->cmd_on_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	voltdm->write(vc_cmdval, vc->cmdval_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	voltdm->vc_param->on = target_volt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	omap_vp_update_errorgain(voltdm, target_volt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) void omap_vc_post_scale(struct voltagedomain *voltdm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 			unsigned long target_volt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 			u8 target_vsel, u8 current_vsel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	u32 smps_steps = 0, smps_delay = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	smps_steps = abs(target_vsel - current_vsel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	/* SMPS slew rate / step size. 2us added as buffer. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	smps_delay = ((smps_steps * voltdm->pmic->step_size) /
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 			voltdm->pmic->slew_rate) + 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	udelay(smps_delay);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) /* vc_bypass_scale - VC bypass method of voltage scaling */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) int omap_vc_bypass_scale(struct voltagedomain *voltdm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 			 unsigned long target_volt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	struct omap_vc_channel *vc = voltdm->vc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	u32 loop_cnt = 0, retries_cnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	u8 target_vsel, current_vsel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	vc_valid = vc->common->valid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	vc_bypass_val_reg = vc->common->bypass_val_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	vc_bypass_value = (target_vsel << vc->common->data_shift) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		(vc->volt_reg_addr << vc->common->regaddr_shift) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		(vc->i2c_slave_addr << vc->common->slaveaddr_shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	voltdm->write(vc_bypass_value, vc_bypass_val_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	vc_bypass_value = voltdm->read(vc_bypass_val_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	 * Loop till the bypass command is acknowledged from the SMPS.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	 * NOTE: This is legacy code. The loop count and retry count needs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	 * to be revisited.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	while (!(vc_bypass_value & vc_valid)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 		loop_cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 		if (retries_cnt > 10) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 			pr_warn("%s: Retry count exceeded\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 			return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		if (loop_cnt > 50) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 			retries_cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 			loop_cnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 			udelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 		vc_bypass_value = voltdm->read(vc_bypass_val_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) /* Convert microsecond value to number of 32kHz clock cycles */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static inline u32 omap_usec_to_32k(u32 usec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) struct omap3_vc_timings {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	u32 voltsetup1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	u32 voltsetup2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) struct omap3_vc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	struct voltagedomain *vd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	u32 voltctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	u32 voltsetup1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	u32 voltsetup2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	struct omap3_vc_timings timings[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) static struct omap3_vc vc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) void omap3_vc_set_pmic_signaling(int core_next_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	struct voltagedomain *vd = vc.vd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	struct omap3_vc_timings *c = vc.timings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	u32 voltctrl, voltsetup1, voltsetup2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	voltctrl = vc.voltctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	voltsetup1 = vc.voltsetup1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	voltsetup2 = vc.voltsetup2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	switch (core_next_state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	case PWRDM_POWER_OFF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 		if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 			voltsetup2 = c->voltsetup2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 			voltsetup1 = c->voltsetup1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	case PWRDM_POWER_RET:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		c++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 			      OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 		voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		voltsetup1 = c->voltsetup1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	if (voltctrl != vc.voltctrl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		vc.voltctrl = voltctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	if (voltsetup1 != vc.voltsetup1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		vd->write(c->voltsetup1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 			  OMAP3_PRM_VOLTSETUP1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		vc.voltsetup1 = voltsetup1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	if (voltsetup2 != vc.voltsetup2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 		vd->write(c->voltsetup2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 			  OMAP3_PRM_VOLTSETUP2_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		vc.voltsetup2 = voltsetup2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) void omap4_vc_set_pmic_signaling(int core_next_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	struct voltagedomain *vd = vc.vd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	if (!vd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	switch (core_next_state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	case PWRDM_POWER_RET:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		val = OMAP4_VDD_RET_VAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 		val = OMAP4_VDD_DEFAULT_VAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	vd->write(val, OMAP4_PRM_VOLTCTRL_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)  * Configure signal polarity for sys_clkreq and sys_off_mode pins
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)  * as the default values are wrong and can cause the system to hang
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)  * if any twl4030 scripts are loaded.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	if (vc.vd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	vc.vd = voltdm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	    (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 		val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 		val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 		pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 			 val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 		voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	 * By default let's use I2C4 signaling for retention idle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	 * and sys_off_mode pin signaling for off idle. This way we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	 * have sys_clk_req pin go down for retention and both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	 * sys_clk_req and sys_off_mode pins will go down for off
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	 * idle. And we can also scale voltages to zero for off-idle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	 * Note that no actual voltage scaling during off-idle will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	 * happen unless the board specific twl4030 PMIC scripts are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	 * loaded. See also omap_vc_i2c_init for comments regarding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	 * erratum i531.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 		val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 		pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 			 val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 		voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	vc.voltctrl = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 				  struct omap3_vc_timings *c, u32 idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	val <<= __ffs(voltdm->vfsm->voltsetup_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	c->voltsetup1 |= val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388)  * omap3_set_i2c_timings - sets i2c sleep timings for a channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389)  * @voltdm: channel to configure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390)  * @off_mode: select whether retention or off mode values used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)  * Calculates and sets up voltage controller to use I2C based
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)  * voltage scaling for sleep modes. This can be used for either off mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)  * or retention. Off mode has additionally an option to use sys_off_mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)  * pad, which uses a global signal to program the whole power IC to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)  * off-mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)  * Note that pmic is not controlling the voltage scaling during
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)  * retention signaled over I2C4, so we can keep voltsetup2 as 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)  * And the oscillator is not shut off over I2C4, so no need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401)  * set clksetup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	struct omap3_vc_timings *c = vc.timings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	/* Configure PRWDM_POWER_OFF over I2C4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	c++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	/* Configure PRWDM_POWER_RET over I2C4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)  * omap3_set_off_timings - sets off-mode timings for a channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)  * @voltdm: channel to configure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)  * Calculates and sets up off-mode timings for a channel. Off-mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419)  * can use either I2C based voltage scaling, or alternatively
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)  * sys_off_mode pad can be used to send a global command to power IC.n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)  * sys_off_mode has the additional benefit that voltages can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)  * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)  * scale to 600mV.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)  * Note that omap is not controlling the voltage scaling during
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)  * off idle signaled by sys_off_mode, so we can keep voltsetup1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)  * as 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) static void omap3_set_off_timings(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	struct omap3_vc_timings *c = vc.timings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	u32 tstart, tshut, clksetup, voltoffset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	if (c->voltsetup2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	omap_pm_get_oscillator(&tstart, &tshut);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	if (tstart == ULONG_MAX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 		pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 		clksetup = omap_usec_to_32k(10000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 		clksetup = omap_usec_to_32k(tstart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	 * switch from HFCLKIN to internal oscillator. That means timings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	 * that means we can calculate the value based on the oscillator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	 * start-up time since voltoffset2 = clksetup - voltoffset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	voltoffset = omap_usec_to_32k(488);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	c->voltsetup2 = clksetup - voltoffset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	omap3_vc_init_pmic_signaling(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	omap3_set_off_timings(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	omap3_set_i2c_timings(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)  * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467)  * @voltdm: channel to calculate values for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468)  * @voltage_diff: voltage difference in microvolts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470)  * Calculates voltage ramp prescaler + counter values for a voltage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471)  * difference on omap4. Returns a field value suitable for writing to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472)  * VOLTSETUP register for a channel in following format:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)  * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	u32 prescaler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	u32 cycles;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	u32 time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	time = voltage_diff / voltdm->pmic->slew_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	cycles /= 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	prescaler = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	/* shift to next prescaler until no overflow */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	/* scale for div 256 = 64 * 4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	if (cycles > 63) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 		cycles /= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 		prescaler++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	/* scale for div 512 = 256 * 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	if (cycles > 63) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 		cycles /= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 		prescaler++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	/* scale for div 2048 = 512 * 4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	if (cycles > 63) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 		cycles /= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 		prescaler++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	/* check for overflow => invalid ramp time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	if (cycles > 63) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 		pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 			voltdm->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	cycles++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 		(cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522)  * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523)  * @usec: microseconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524)  * @shift: number of bits to shift left
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)  * @mask: bitfield mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)  * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)  * shifted to requested position, and checked agains the mask value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529)  * If larger, forced to the max value of the field (i.e. the mask itself.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)  * Returns the SCRM bitfield value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	val = omap_usec_to_32k(usec) << shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	/* Check for overflow, if yes, force to max value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	if (val > mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 		val = mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	return val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546)  * omap4_set_timings - set voltage ramp timings for a channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)  * @voltdm: channel to configure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548)  * @off_mode: whether off-mode values are used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550)  * Calculates and sets the voltage ramp up / down values for a channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	u32 ramp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	int offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	u32 tstart, tshut;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	if (off_mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 		ramp = omap4_calc_volt_ramp(voltdm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 			voltdm->vc_param->on - voltdm->vc_param->off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 		offset = voltdm->vfsm->voltsetup_off_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 		ramp = omap4_calc_volt_ramp(voltdm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 			voltdm->vc_param->on - voltdm->vc_param->ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 		offset = voltdm->vfsm->voltsetup_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	if (!ramp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	val = voltdm->read(offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	voltdm->write(val, offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	omap_pm_get_oscillator(&tstart, &tshut);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 		OMAP4_SETUPTIME_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 		OMAP4_DOWNTIME_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) static void __init omap4_vc_init_pmic_signaling(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 	if (vc.vd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	vc.vd = voltdm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	voltdm->write(OMAP4_VDD_DEFAULT_VAL, OMAP4_PRM_VOLTCTRL_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) /* OMAP4 specific voltage init functions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	omap4_vc_init_pmic_signaling(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	omap4_set_timings(voltdm, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	omap4_set_timings(voltdm, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) struct i2c_init_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	u8 loadbits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	u8 load;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	u8 hsscll_38_4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	u8 hsscll_26;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	u8 hsscll_19_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	u8 hsscll_16_8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	u8 hsscll_12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) static const struct i2c_init_data omap4_i2c_timing_data[] __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 		.load = 50,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 		.loadbits = 0x3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 		.hsscll_38_4 = 13,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 		.hsscll_26 = 11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 		.hsscll_19_2 = 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 		.hsscll_16_8 = 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 		.hsscll_12 = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 		.load = 25,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 		.loadbits = 0x2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 		.hsscll_38_4 = 13,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 		.hsscll_26 = 11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 		.hsscll_19_2 = 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 		.hsscll_16_8 = 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 		.hsscll_12 = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 		.load = 12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 		.loadbits = 0x1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 		.hsscll_38_4 = 11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 		.hsscll_26 = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 		.hsscll_19_2 = 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 		.hsscll_16_8 = 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 		.hsscll_12 = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 		.load = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 		.loadbits = 0x0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 		.hsscll_38_4 = 12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 		.hsscll_26 = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 		.hsscll_19_2 = 9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 		.hsscll_16_8 = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 		.hsscll_12 = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657)  * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658)  * @voltdm: voltagedomain pointer to get data from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660)  * Use PMIC + board supplied settings for calculating the total I2C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661)  * channel capacitance and set the timing parameters based on this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662)  * Pre-calculated values are provided in data tables, as it is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663)  * too straightforward to calculate these runtime.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 	u32 capacitance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 	u16 hsscll;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 	const struct i2c_init_data *i2c_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 	if (!voltdm->pmic->i2c_high_speed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 		pr_info("%s: using bootloader low-speed timings\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 	/* PCB trace capacitance, 0.125pF / mm => mm / 8 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 	capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 	/* OMAP pad capacitance */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 	capacitance += 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 	/* PMIC pad capacitance */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	capacitance += voltdm->pmic->i2c_pad_load;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 	/* Search for capacitance match in the table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	i2c_data = omap4_i2c_timing_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	while (i2c_data->load > capacitance)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 		i2c_data++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 	/* Select proper values based on sysclk frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 	switch (voltdm->sys_clk.rate) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	case 38400000:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 		hsscll = i2c_data->hsscll_38_4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	case 26000000:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 		hsscll = i2c_data->hsscll_26;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 	case 19200000:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 		hsscll = i2c_data->hsscll_19_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	case 16800000:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 		hsscll = i2c_data->hsscll_16_8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 	case 12000000:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 		hsscll = i2c_data->hsscll_12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 		pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 			voltdm->sys_clk.rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	/* Loadbits define pull setup for the I2C channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	/* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 				OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 	/* HSSCLH can always be zero */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 	val = hsscll << OMAP4430_HSSCLL_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	/* Write setup times to I2C config register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 	voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733)  * omap_vc_i2c_init - initialize I2C interface to PMIC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734)  * @voltdm: voltage domain containing VC data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736)  * Use PMIC supplied settings for I2C high-speed mode and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737)  * master code (if set) and program the VC I2C configuration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738)  * register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740)  * The VC I2C configuration is common to all VC channels,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741)  * so this function only configures I2C for the first VC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742)  * channel registers.  All other VC channels will use the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743)  * same configuration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 	struct omap_vc_channel *vc = voltdm->vc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 	static bool initialized;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	static bool i2c_high_speed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 	u8 mcode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 	if (initialized) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 		if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 			pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 				__func__, voltdm->name, i2c_high_speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 	 * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	 * erratum i531 "Extra Power Consumed When Repeated Start Operation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 	 * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	 * Otherwise I2C4 eventually leads into about 23mW extra power being
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 	 * consumed even during off idle using VMODE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 	i2c_high_speed = voltdm->pmic->i2c_high_speed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 	if (i2c_high_speed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 		voltdm->rmw(vc->common->i2c_cfg_clear_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 			    vc->common->i2c_cfg_hsen_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 			    vc->common->i2c_cfg_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 	mcode = voltdm->pmic->i2c_mcode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 	if (mcode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 		voltdm->rmw(vc->common->i2c_mcode_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 			    mcode << __ffs(vc->common->i2c_mcode_mask),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 			    vc->common->i2c_cfg_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 	if (cpu_is_omap44xx())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 		omap4_vc_i2c_timing_init(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 	initialized = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785)  * omap_vc_calc_vsel - calculate vsel value for a channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786)  * @voltdm: channel to calculate value for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787)  * @uvolt: microvolt value to convert to vsel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789)  * Converts a microvolt value to vsel value for the used PMIC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790)  * This checks whether the microvolt value is out of bounds, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791)  * adjusts the value accordingly. If unsupported value detected,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792)  * warning is thrown.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 	if (voltdm->pmic->vddmin > uvolt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 		uvolt = voltdm->pmic->vddmin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 	if (voltdm->pmic->vddmax < uvolt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 		WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 			__func__, uvolt, voltdm->pmic->vddmax);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 		/* Lets try maximum value anyway */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 		uvolt = voltdm->pmic->vddmax;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 	return voltdm->pmic->uv_to_vsel(uvolt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) #ifdef CONFIG_PM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810)  * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811)  * @mm: length of the PCB trace in millimetres
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813)  * Sets the PCB trace length for the I2C channel. By default uses 63mm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814)  * This is needed for properly calculating the capacitance value for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815)  * the PCB trace, and for setting the SR I2C channel timing parameters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 	sr_i2c_pcb_length = mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) void __init omap_vc_init_channel(struct voltagedomain *voltdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 	struct omap_vc_channel *vc = voltdm->vc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 	u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 	if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 		pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 	if (!voltdm->read || !voltdm->write) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 		pr_err("%s: No read/write API for accessing vdd_%s regs\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 			__func__, voltdm->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 	vc->cfg_channel = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 	if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 		vc_cfg_bits = &vc_mutant_channel_cfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 		vc_cfg_bits = &vc_default_channel_cfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 	/* get PMIC/board specific settings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 	vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 	vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 	vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 	/* Configure the i2c slave address for this VC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 	voltdm->rmw(vc->smps_sa_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) 		    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 		    vc->smps_sa_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 	vc->cfg_channel |= vc_cfg_bits->sa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 	 * Configure the PMIC register addresses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 	voltdm->rmw(vc->smps_volra_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 		    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 		    vc->smps_volra_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 	vc->cfg_channel |= vc_cfg_bits->rav;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 	if (vc->cmd_reg_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 		voltdm->rmw(vc->smps_cmdra_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 			    vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 			    vc->smps_cmdra_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 		vc->cfg_channel |= vc_cfg_bits->rac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) 	if (vc->cmd_reg_addr == vc->volt_reg_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) 		vc->cfg_channel |= vc_cfg_bits->racen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 	/* Set up the on, inactive, retention and off voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) 	on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) 	onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) 	ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 	off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) 	val = ((on_vsel << vc->common->cmd_on_shift) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) 	       (onlp_vsel << vc->common->cmd_onlp_shift) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) 	       (ret_vsel << vc->common->cmd_ret_shift) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) 	       (off_vsel << vc->common->cmd_off_shift));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) 	voltdm->write(val, vc->cmdval_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) 	vc->cfg_channel |= vc_cfg_bits->cmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) 	/* Channel configuration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) 	omap_vc_config_channel(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) 	omap_vc_i2c_init(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) 	if (cpu_is_omap34xx())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) 		omap3_vc_init_channel(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) 	else if (cpu_is_omap44xx())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) 		omap4_vc_init_channel(voltdm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898)