Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * OMAP2/3 PRM module functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2010-2011 Texas Instruments, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 2010 Nokia Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Benoît Cousson
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Paul Walmsley
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include "powerdomain.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include "prm2xxx_3xxx.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include "prm-regbits-24xx.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include "clockdomain.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * omap2_prm_is_hardreset_asserted - read the HW reset line state of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * submodules contained in the hwmod module
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * @shift: register bit shift corresponding to the reset line to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * @part: PRM partition, ignored for OMAP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * @prm_mod: PRM submodule base (e.g. CORE_MOD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * @offset: register offset, ignored for OMAP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * Returns 1 if the (sub)module hardreset line is currently asserted,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * 0 if the (sub)module hardreset line is not currently asserted, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * -EINVAL if called while running on a non-OMAP2/3 chip.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) int omap2_prm_is_hardreset_asserted(u8 shift, u8 part, s16 prm_mod, u16 offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	return omap2_prm_read_mod_bits_shift(prm_mod, OMAP2_RM_RSTCTRL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 				       (1 << shift));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * omap2_prm_assert_hardreset - assert the HW reset line of a submodule
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * @shift: register bit shift corresponding to the reset line to assert
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * @part: PRM partition, ignored for OMAP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * @prm_mod: PRM submodule base (e.g. CORE_MOD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * @offset: register offset, ignored for OMAP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  * Some IPs like dsp or iva contain processors that require an HW
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  * reset line to be asserted / deasserted in order to fully enable the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * IP.  These modules may have multiple hard-reset lines that reset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * different 'submodules' inside the IP block.  This function will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * place the submodule into reset.  Returns 0 upon success or -EINVAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * upon an argument error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) int omap2_prm_assert_hardreset(u8 shift, u8 part, s16 prm_mod, u16 offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	mask = 1 << shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	omap2_prm_rmw_mod_reg_bits(mask, mask, prm_mod, OMAP2_RM_RSTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * omap2_prm_deassert_hardreset - deassert a submodule hardreset line and wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * @prm_mod: PRM submodule base (e.g. CORE_MOD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  * @rst_shift: register bit shift corresponding to the reset line to deassert
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * @st_shift: register bit shift for the status of the deasserted submodule
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * @part: PRM partition, not used for OMAP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  * @prm_mod: PRM submodule base (e.g. CORE_MOD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  * @rst_offset: reset register offset, not used for OMAP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  * @st_offset: reset status register offset, not used for OMAP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * Some IPs like dsp or iva contain processors that require an HW
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * reset line to be asserted / deasserted in order to fully enable the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  * IP.  These modules may have multiple hard-reset lines that reset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  * different 'submodules' inside the IP block.  This function will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  * take the submodule out of reset and wait until the PRCM indicates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * that the reset has completed before returning.  Returns 0 upon success or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  * -EINVAL upon an argument error, -EEXIST if the submodule was already out
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  * of reset, or -EBUSY if the submodule did not exit reset promptly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) int omap2_prm_deassert_hardreset(u8 rst_shift, u8 st_shift, u8 part,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 				 s16 prm_mod, u16 rst_offset, u16 st_offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	u32 rst, st;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	int c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	rst = 1 << rst_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	st = 1 << st_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	/* Check the current status to avoid de-asserting the line twice */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	if (omap2_prm_read_mod_bits_shift(prm_mod, OMAP2_RM_RSTCTRL, rst) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		return -EEXIST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	/* Clear the reset status by writing 1 to the status bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	omap2_prm_rmw_mod_reg_bits(0xffffffff, st, prm_mod, OMAP2_RM_RSTST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	/* de-assert the reset control line */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	omap2_prm_rmw_mod_reg_bits(rst, 0, prm_mod, OMAP2_RM_RSTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	/* wait the status to be set */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	omap_test_timeout(omap2_prm_read_mod_bits_shift(prm_mod, OMAP2_RM_RSTST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 						  st),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 			  MAX_MODULE_HARDRESET_WAIT, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	return (c == MAX_MODULE_HARDRESET_WAIT) ? -EBUSY : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) /* Powerdomain low-level functions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) /* Common functions across OMAP2 and OMAP3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) int omap2_pwrdm_set_mem_onst(struct powerdomain *pwrdm, u8 bank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 								u8 pwrst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	u32 m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	m = omap2_pwrdm_get_mem_bank_onstate_mask(bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	omap2_prm_rmw_mod_reg_bits(m, (pwrst << __ffs(m)), pwrdm->prcm_offs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 				   OMAP2_PM_PWSTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) int omap2_pwrdm_set_mem_retst(struct powerdomain *pwrdm, u8 bank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 								u8 pwrst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	u32 m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	m = omap2_pwrdm_get_mem_bank_retst_mask(bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	omap2_prm_rmw_mod_reg_bits(m, (pwrst << __ffs(m)), pwrdm->prcm_offs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 				   OMAP2_PM_PWSTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) int omap2_pwrdm_read_mem_pwrst(struct powerdomain *pwrdm, u8 bank)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	u32 m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	m = omap2_pwrdm_get_mem_bank_stst_mask(bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	return omap2_prm_read_mod_bits_shift(pwrdm->prcm_offs, OMAP2_PM_PWSTST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 					     m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) int omap2_pwrdm_read_mem_retst(struct powerdomain *pwrdm, u8 bank)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	u32 m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	m = omap2_pwrdm_get_mem_bank_retst_mask(bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	return omap2_prm_read_mod_bits_shift(pwrdm->prcm_offs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 					     OMAP2_PM_PWSTCTRL, m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) int omap2_pwrdm_set_logic_retst(struct powerdomain *pwrdm, u8 pwrst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	u32 v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	v = pwrst << __ffs(OMAP_LOGICRETSTATE_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	omap2_prm_rmw_mod_reg_bits(OMAP_LOGICRETSTATE_MASK, v, pwrdm->prcm_offs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 				   OMAP2_PM_PWSTCTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) int omap2_pwrdm_wait_transition(struct powerdomain *pwrdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	u32 c = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	 * REVISIT: pwrdm_wait_transition() may be better implemented
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	 * via a callback and a periodic timer check -- how long do we expect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	 * powerdomain transitions to take?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	/* XXX Is this udelay() value meaningful? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	while ((omap2_prm_read_mod_reg(pwrdm->prcm_offs, OMAP2_PM_PWSTST) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		OMAP_INTRANSITION_MASK) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 		(c++ < PWRDM_TRANSITION_BAILOUT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 			udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	if (c > PWRDM_TRANSITION_BAILOUT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		pr_err("powerdomain: %s: waited too long to complete transition\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 		       pwrdm->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		return -EAGAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	pr_debug("powerdomain: completed transition in %d loops\n", c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) int omap2_clkdm_add_wkdep(struct clockdomain *clkdm1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 			  struct clockdomain *clkdm2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	omap2_prm_set_mod_reg_bits((1 << clkdm2->dep_bit),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 				   clkdm1->pwrdm.ptr->prcm_offs, PM_WKDEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) int omap2_clkdm_del_wkdep(struct clockdomain *clkdm1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 			  struct clockdomain *clkdm2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	omap2_prm_clear_mod_reg_bits((1 << clkdm2->dep_bit),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 				     clkdm1->pwrdm.ptr->prcm_offs, PM_WKDEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) int omap2_clkdm_read_wkdep(struct clockdomain *clkdm1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 			   struct clockdomain *clkdm2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	return omap2_prm_read_mod_bits_shift(clkdm1->pwrdm.ptr->prcm_offs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 					     PM_WKDEP, (1 << clkdm2->dep_bit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) /* XXX Caller must hold the clkdm's powerdomain lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) int omap2_clkdm_clear_all_wkdeps(struct clockdomain *clkdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	struct clkdm_dep *cd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	u32 mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	for (cd = clkdm->wkdep_srcs; cd && cd->clkdm_name; cd++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 		if (!cd->clkdm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 			continue; /* only happens if data is erroneous */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		/* PRM accesses are slow, so minimize them */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 		mask |= 1 << cd->clkdm->dep_bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		cd->wkdep_usecount = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	omap2_prm_clear_mod_reg_bits(mask, clkdm->pwrdm.ptr->prcm_offs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 				     PM_WKDEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)