^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) 2014-2015 Broadcom Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright 2014 Linaro Limited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <linux/cpumask.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/irqchip/irq-bcm2836.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/of_address.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/sched/clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <asm/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <asm/smp_plat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <asm/smp_scu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include "platsmp.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) /* Size of mapped Cortex A9 SCU address space */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define CORTEX_A9_SCU_SIZE 0x58
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define BOOT_ADDR_CPUID_MASK 0x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) /* Name of device node property defining secondary boot register location */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define OF_SECONDARY_BOOT "secondary-boot-reg"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define MPIDR_CPUID_BITMASK 0x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) * Enable the Cortex A9 Snoop Control Unit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * By the time this is called we already know there are multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * cores present. We assume we're running on a Cortex A9 processor,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * so any trouble getting the base address register or getting the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * SCU base is a problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * Return 0 if successful or an error code otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) static int __init scu_a9_enable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) unsigned long config_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) void __iomem *scu_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) if (!scu_a9_has_base()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) pr_err("no configuration base address register!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) /* Config base address register value is zero for uniprocessor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) config_base = scu_a9_get_base();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) if (!config_base) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) pr_err("hardware reports only one core\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) if (!scu_base) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) pr_err("failed to remap config base (%lu/%u) for SCU\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) config_base, CORTEX_A9_SCU_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) scu_enable(scu_base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) iounmap(scu_base); /* That's the last we'll need of this */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) static u32 secondary_boot_addr_for(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) u32 secondary_boot_addr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) if (!cpu_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) pr_err("Failed to find device tree node for CPU%u\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) if (of_property_read_u32(cpu_node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) OF_SECONDARY_BOOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) &secondary_boot_addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) pr_err("required secondary boot register not specified for CPU%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) of_node_put(cpu_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) return secondary_boot_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) static int nsp_write_lut(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) void __iomem *sku_rom_lut;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) phys_addr_t secondary_startup_phy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) if (!secondary_boot_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) sizeof(phys_addr_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) if (!sku_rom_lut) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) secondary_startup_phy = __pa_symbol(secondary_startup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) writel_relaxed(secondary_startup_phy, sku_rom_lut);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) /* Ensure the write is visible to the secondary core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) iounmap(sku_rom_lut);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) /* Enable the SCU on Cortex A9 based SoCs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) if (scu_a9_enable()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) /* Update the CPU present map to reflect uniprocessor mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) pr_warn("failed to enable A9 SCU - disabling SMP\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) init_cpu_present(&only_cpu_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) * The ROM code has the secondary cores looping, waiting for an event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) * When an event occurs each core examines the bottom two bits of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) * secondary boot register. When a core finds those bits contain its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) * own core id, it performs initialization, including computing its boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) * address by clearing the boot register value's bottom two bits. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) * core signals that it is beginning its execution by writing its boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) * address back to the secondary boot register, and finally jumps to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) * that address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) * So to start a core executing we need to:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) * - Encode the (hardware) CPU id with the bottom bits of the secondary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) * start address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * - Write that value into the secondary boot register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * - Generate an event to wake up the secondary CPU(s).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) * - Wait for the secondary boot register to be re-written, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) * indicates the secondary core has started.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) void __iomem *boot_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) phys_addr_t boot_func;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) u64 start_clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) u32 cpu_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) u32 boot_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) bool timeout = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) cpu_id = cpu_logical_map(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) if (!secondary_boot_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) boot_reg = ioremap((phys_addr_t)secondary_boot_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) sizeof(phys_addr_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) if (!boot_reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) pr_err("unable to map boot register for cpu %u\n", cpu_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) * Secondary cores will start in secondary_startup(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) * defined in "arch/arm/kernel/head.S"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) boot_func = __pa_symbol(secondary_startup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) BUG_ON(boot_func > (phys_addr_t)U32_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /* The core to start is encoded in the low bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) boot_val = (u32)boot_func | cpu_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) writel_relaxed(boot_val, boot_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) sev();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) /* The low bits will be cleared once the core has started */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) start_clock = local_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) while (!timeout && readl_relaxed(boot_reg) == boot_val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) iounmap(boot_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) if (!timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) pr_err("timeout waiting for cpu %u to start\n", cpu_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) /* Cluster Dormant Control command to bring CPU into a running state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) #define CDC_CMD 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) #define CDC_CMD_OFFSET 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) * BCM23550 has a Cluster Dormant Control block that keeps the core in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) * idle state. A command needs to be sent to the block to bring the CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) * into running state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) void __iomem *cdc_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) struct device_node *dn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) /* Make sure a CDC node exists before booting the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) * secondary core.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) name = "brcm,bcm23550-cdc";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) dn = of_find_compatible_node(NULL, NULL, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) if (!dn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) pr_err("unable to find cdc node\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) cdc_base = of_iomap(dn, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) of_node_put(dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) if (!cdc_base) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) pr_err("unable to remap cdc base register\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) /* Boot the secondary core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) ret = kona_boot_secondary(cpu, idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) /* Bring this CPU to RUN state so that nIRQ nFIQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) * signals are unblocked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) iounmap(cdc_base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) * After wake up, secondary core branches to the startup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) * address programmed at SKU ROM LUT location.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) ret = nsp_write_lut(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) pr_err("unable to write startup addr to SKU ROM LUT\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) /* Send a CPU wakeup interrupt to the secondary core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) arch_send_wakeup_ipi_mask(cpumask_of(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) void __iomem *intc_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) struct device_node *dn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) name = "brcm,bcm2836-l1-intc";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) dn = of_find_compatible_node(NULL, NULL, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) if (!dn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) pr_err("unable to find intc node\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) intc_base = of_iomap(dn, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) of_node_put(dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) if (!intc_base) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) pr_err("unable to remap intc base register\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) writel(virt_to_phys(secondary_startup),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) dsb(sy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) sev();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) iounmap(intc_base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) static const struct smp_operations kona_smp_ops __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) .smp_prepare_cpus = bcm_smp_prepare_cpus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) .smp_boot_secondary = kona_boot_secondary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) &kona_smp_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) static const struct smp_operations bcm23550_smp_ops __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) .smp_boot_secondary = bcm23550_boot_secondary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) &bcm23550_smp_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) static const struct smp_operations nsp_smp_ops __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) .smp_prepare_cpus = bcm_smp_prepare_cpus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) .smp_boot_secondary = nsp_boot_secondary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) const struct smp_operations bcm2836_smp_ops __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) .smp_boot_secondary = bcm2836_boot_secondary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);