Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * TLB Management (flush/create/diagnostics) for ARC700
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * vineetg: Aug 2011
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * vineetg: May 2011
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *   some of the LMBench tests improved amazingly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *      = page-fault thrice as fast (75 usec to 28 usec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  *      = mmap twice as fast (9.6 msec to 4.6 msec),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  *      = fork (5.3 msec to 3.7 msec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * vineetg: April 2011 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  *      helps avoid a shift when preparing PD0 from PTE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  * vineetg: April 2011 : Preparing for MMU V3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  *  -MMU v2/v3 BCRs decoded differently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  *  -tlb_entry_erase( ) can be void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  *  -local_flush_tlb_range( ):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  *      = need not "ceil" @end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  *      = walks MMU only if range spans < 32 entries, as opposed to 256
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * Vineetg: Sept 10th 2008
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  *  -Changes related to MMU v2 (Rel 4.8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * Vineetg: Aug 29th 2008
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  *  -In TLB Flush operations (Metal Fix MMU) there is a explicit command to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  *    it fails. Thus need to load it with ANY valid value before invoking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  *    TLBIVUTLB cmd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  * Vineetg: Aug 21th 2008:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  *  -Multiple copies of TLB erase code separated into a "single" function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  *       in interrupt-safe region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * Vineetg: April 23rd Bug #93131
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  *              flush is more than the size of TLB itself.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * Rahul Trivedi : Codito Technologies 2004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #include <linux/bug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #include <linux/mm_types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #include <asm/arcregs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #include <asm/setup.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #include <asm/mmu_context.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #include <asm/mmu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) /*			Need for ARC MMU v2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * map into same set, there would be contention for the 2 ways causing severe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * Thrashing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  * Given this, the thrashing problem should never happen because once the 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  * J-TLB entries are created (even though 3rd will knock out one of the prev
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * This is a simple design for keeping them in sync. So what do we do?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  * The solution which James came up was pretty neat. It utilised the assoc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  * of uTLBs by not invalidating always but only when absolutely necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * - Existing TLB commands work as before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  * - New command (TLBIVUTLB) to invalidate uTLBs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * The uTLBs need only be invalidated when pages are being removed from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  * as a result of a miss, the removed entry is still allowed to exist in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * uTLBs as it is still valid and present in the OS page table. This allows the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * full associativity of the uTLBs to hide the limited associativity of the main
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  * TLB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  * During a miss handler, the new "TLBWriteNI" command is used to load
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  * entries without clearing the uTLBs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  * When the OS page table is updated, TLB entries that may be associated with a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  * removed page are removed (flushed) from the TLB using TLBWrite. In this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  * circumstance, the uTLBs must also be cleared. This is done by using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * existing TLBWrite command. An explicit IVUTLB is also required for those
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  * corner cases when TLBWrite was not executed at all because the corresp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  * J-TLB entry got evicted/replaced.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) /* A copy of the ASID from the PID reg is kept in asid_cache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) static int __read_mostly pae_exists;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  * Utility Routine to erase a J-TLB entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)  * Caller needs to setup Index Reg (manually or via getIndex)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) static inline void __tlb_entry_erase(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	write_aux_reg(ARC_REG_TLBPD1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	if (is_pae40_enabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	write_aux_reg(ARC_REG_TLBPD0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) static void utlb_invalidate(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #if (CONFIG_ARC_MMU_VER >= 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) #if (CONFIG_ARC_MMU_VER == 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	/* MMU v2 introduced the uTLB Flush command.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	 * There was however an obscure hardware bug, where uTLB flush would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	 * fail when a prior probe for J-TLB (both totally unrelated) would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	 * return lkup err - because the entry didn't exist in MMU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	 * The Workaround was to set Index reg with some valid value, prior to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	 * flush. This was fixed in MMU v3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	unsigned int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	/* make sure INDEX Reg is valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	idx = read_aux_reg(ARC_REG_TLBINDEX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	/* If not write some dummy val */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	if (unlikely(idx & TLB_LKUP_ERR))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) #if (CONFIG_ARC_MMU_VER < 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	unsigned int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	idx = read_aux_reg(ARC_REG_TLBINDEX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	return idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) static void tlb_entry_erase(unsigned int vaddr_n_asid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	unsigned int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	/* Locate the TLB entry for this vaddr + ASID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	idx = tlb_entry_lkup(vaddr_n_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	/* No error means entry found, zero it out */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	if (likely(!(idx & TLB_LKUP_ERR))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		__tlb_entry_erase();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		/* Duplicate entry error */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 					   vaddr_n_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	unsigned int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 * First verify if entry for this vaddr+ASID already exists
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	 * This also sets up PD0 (vaddr, ASID..) for final commit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	idx = tlb_entry_lkup(pd0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	 * If Not already present get a free slot from MMU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	 * Otherwise, Probe would have located the entry and set INDEX Reg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	 * with existing location. This will cause Write CMD to over-write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	 * existing entry with new PD0 and PD1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	if (likely(idx & TLB_LKUP_ERR))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	/* setup the other half of TLB entry (pfn, rwx..) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	write_aux_reg(ARC_REG_TLBPD1, pd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	 * Commit the Entry to MMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	 * It doesn't sound safe to use the TLBWriteNI cmd here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) #else	/* CONFIG_ARC_MMU_VER >= 4) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) static void tlb_entry_erase(unsigned int vaddr_n_asid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	write_aux_reg(ARC_REG_TLBPD0, pd0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	write_aux_reg(ARC_REG_TLBPD1, pd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	if (is_pae40_enabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)  * Un-conditionally (without lookup) erase the entire MMU contents
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) noinline void local_flush_tlb_all(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	unsigned int entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	int num_tlb = mmu->sets * mmu->ways;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	/* Load PD0 and PD1 with template for a Blank Entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	write_aux_reg(ARC_REG_TLBPD1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	if (is_pae40_enabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	write_aux_reg(ARC_REG_TLBPD0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	for (entry = 0; entry < num_tlb; entry++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 		/* write this entry to the TLB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		write_aux_reg(ARC_REG_TLBINDEX, entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 		const int stlb_idx = 0x800;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		/* Blank sTLB entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 			write_aux_reg(ARC_REG_TLBINDEX, entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	utlb_invalidate();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)  * Flush the entire MM for userland. The fastest way is to move to Next ASID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) noinline void local_flush_tlb_mm(struct mm_struct *mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	 * Small optimisation courtesy IA64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	 * all other cases are NOPs, hence this check.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	if (atomic_read(&mm->mm_users) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	 * - Move to a new ASID, but only if the mm is still wired in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	 *    causing h/w - s/w ASID to get out of sync)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	 * - Also get_new_mmu_context() new implementation allocates a new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	 *   ASID only if it is not allocated already - so unallocate first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	destroy_context(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	if (current->mm == mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		get_new_mmu_context(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)  * Flush a Range of TLB entries for userland.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)  * @start is inclusive, while @end is exclusive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)  * Difference between this and Kernel Range Flush is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)  *  -Here the fastest way (if range is too large) is to move to next ASID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305)  *      without doing any explicit Shootdown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)  *  -In case of kernel Flush, entry has to be shot down explicitly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 			   unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	const unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	/* If range @start to @end is more than 32 TLB entries deep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	 * its better to move to a new ASID rather than searching for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	 * individual entries and then shooting them down
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	 * The calc above is rough, doesn't account for unaligned parts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	 * since this is heuristics based anyways
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 		local_flush_tlb_mm(vma->vm_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	 * @start moved to page start: this alone suffices for checking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	 * loop end condition below, w/o need for aligning @end to end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	 * e.g. 2000 to 4001 will anyhow loop twice
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	start &= PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 		while (start < end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 			start += PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)  *  @start, @end interpreted as kvaddr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)  * Interestingly, shared TLB entries can also be flushed using just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)  * @start,@end alone (interpreted as user vaddr), although technically SASID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)  * is also needed. However our smart TLbProbe lookup takes care of that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	/* exactly same as above, except for TLB entry not taking ASID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 		local_flush_tlb_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	start &= PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	while (start < end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 		tlb_entry_erase(start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 		start += PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)  * Delete TLB entry in MMU for a given page (??? address)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)  * NOTE One TLB entry contains translation for single PAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	const unsigned int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	/* Note that it is critical that interrupts are DISABLED between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	 * checking the ASID and using it flush the TLB entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) struct tlb_args {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	struct vm_area_struct *ta_vma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	unsigned long ta_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	unsigned long ta_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) static inline void ipi_flush_tlb_page(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	struct tlb_args *ta = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) static inline void ipi_flush_tlb_range(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	struct tlb_args *ta = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) static inline void ipi_flush_pmd_tlb_range(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	struct tlb_args *ta = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) static inline void ipi_flush_tlb_kernel_range(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	struct tlb_args *ta = (struct tlb_args *)arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) void flush_tlb_all(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) void flush_tlb_mm(struct mm_struct *mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 			 mm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	struct tlb_args ta = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 		.ta_vma = vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 		.ta_start = uaddr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 		     unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	struct tlb_args ta = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 		.ta_vma = vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 		.ta_start = start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		.ta_end = end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 			 unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	struct tlb_args ta = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 		.ta_vma = vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 		.ta_start = start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 		.ta_end = end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) void flush_tlb_kernel_range(unsigned long start, unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	struct tlb_args ta = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 		.ta_start = start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 		.ta_end = end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492)  * Routine to create a TLB entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	unsigned int asid_or_sasid, rwx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	unsigned long pd0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	pte_t pd1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	 * create_tlb() assumes that current->mm == vma->mm, since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	 * -completes the lazy write to SASID reg (again valid for curr tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	 * Removing the assumption involves
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	 * -Fix the TLB paranoid debug code to not trigger false negatives.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	 * -More importantly it makes this handler inconsistent with fast-path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	 *  TLB Refill handler which always deals with "current"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 	 * Lets see the use cases when current->mm != vma->mm and we land here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	 *     Here VM wants to pre-install a TLB entry for user stack while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	 *     current->mm still points to pre-execve mm (hence the condition).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	 *     However the stack vaddr is soon relocated (randomization) and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	 *     move_page_tables() tries to undo that TLB entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	 *     Thus not creating TLB entry is not any worse.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	 *     breakpoint in debugged task. Not creating a TLB now is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	 *     performance critical.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	 * Both the cases above are not good enough for code churn.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	if (current->active_mm != vma->vm_mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	vaddr &= PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	/* update this PTE credentials */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	/* Create HW TLB(PD0,PD1) from PTE  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	/* ASID for this task */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	 * ARC MMU provides fully orthogonal access bits for K/U mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 	 * however Linux only saves 1 set to save PTE real-estate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	 * Here we convert 3 PTE bits into 6 MMU bits:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	 * -Kernel only entries have Kr Kw Kx 0 0 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	 * -User entries have mirrored K and U bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	rwx = pte_val(*ptep) & PTE_BITS_RWX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	if (pte_val(*ptep) & _PAGE_GLOBAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	tlb_entry_insert(pd0, pd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567)  * Called at the end of pagefault, for a userspace mapped page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)  *  -pre-install the corresponding TLB entry into MMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570)  *  	flush_dcache_page(), copy_user_page()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572)  * Note that flush (when done) involves both WBACK - so physical page is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573)  * in sync as well as INV - so any non-congruent aliases don't remain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 		      pte_t *ptep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	struct page *page = pfn_to_page(pte_pfn(*ptep));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	create_tlb(vma, vaddr, ptep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	if (page == ZERO_PAGE(0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	 * Exec page : Independent of aliasing/page-color considerations,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	 *	       since icache doesn't snoop dcache on ARC, any dirty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	 *	       K-mapping of a code page needs to be wback+inv so that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 	 *	       icache fetch by userspace sees code correctly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	 *	       so userspace sees the right data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	 *  (Avoids the flush for Non-exec + congruent mapping case)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	if ((vma->vm_flags & VM_EXEC) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	     addr_not_cache_congruent(paddr, vaddr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 		if (dirty) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 			/* wback + inv dcache lines (K-mapping) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 			__flush_dcache_page(paddr, paddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 			/* invalidate any existing icache lines (U-mapping) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 			if (vma->vm_flags & VM_EXEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 				__inv_icache_page(paddr, vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615)  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616)  * support.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619)  * new bit "SZ" in TLB page descriptor to distinguish between them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620)  * Super Page size is configurable in hardware (4K to 16M), but fixed once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621)  * RTL builds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623)  * The exact THP size a Linux configuration will support is a function of:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624)  *  - MMU page size (typical 8K, RTL fixed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625)  *  - software page walker address split between PGD:PTE:PFN (typical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)  *    11:8:13, but can be changed with 1 line)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627)  * So for above default, THP size supported is 8K * (2^8) = 2M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630)  * reduces to 1 level (as PTE is folded into PGD and canonically referred
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631)  * to as PMD).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632)  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 				 pmd_t *pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 	pte_t pte = __pte(pmd_val(*pmd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 	update_mmu_cache(vma, addr, &pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 				pgtable_t pgtable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	struct list_head *lh = (struct list_head *) pgtable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 	assert_spin_locked(&mm->page_table_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 	/* FIFO */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	if (!pmd_huge_pte(mm, pmdp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 		INIT_LIST_HEAD(lh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 	pmd_huge_pte(mm, pmdp) = pgtable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	struct list_head *lh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	pgtable_t pgtable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 	assert_spin_locked(&mm->page_table_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 	pgtable = pmd_huge_pte(mm, pmdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 	lh = (struct list_head *) pgtable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 	if (list_empty(lh))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 		pmd_huge_pte(mm, pmdp) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 		list_del(lh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	pte_val(pgtable[0]) = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	pte_val(pgtable[1]) = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	return pgtable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 			       unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 		unsigned int asid = hw_pid(vma->vm_mm, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 		/* No need to loop here: this will always be for 1 Huge Page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) /* Read the Cache Build Configuration Registers, Decode them and save into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702)  * the cpuinfo structure for later use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703)  * No Validation is done here, simply read/convert the BCRs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) void read_decode_mmu_bcr(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 	unsigned int tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	struct bcr_mmu_1_2 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) #ifdef CONFIG_CPU_BIG_ENDIAN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	} *mmu2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 	struct bcr_mmu_3 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) #ifdef CONFIG_CPU_BIG_ENDIAN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 		     u_itlb:4, u_dtlb:4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 		     ways:4, ver:8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 	} *mmu3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 	struct bcr_mmu_4 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) #ifdef CONFIG_CPU_BIG_ENDIAN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 	/*           DTLB      ITLB      JES        JE         JA      */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 	} *mmu4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 	tmp = read_aux_reg(ARC_REG_MMU_BCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 	mmu->ver = (tmp >> 24);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	if (is_isa_arcompact()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 		if (mmu->ver <= 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 			mmu2 = (struct bcr_mmu_1_2 *)&tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 			mmu->pg_sz_k = TO_KB(0x2000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 			mmu->sets = 1 << mmu2->sets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 			mmu->ways = 1 << mmu2->ways;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 			mmu->u_dtlb = mmu2->u_dtlb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 			mmu->u_itlb = mmu2->u_itlb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 			mmu3 = (struct bcr_mmu_3 *)&tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 			mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 			mmu->sets = 1 << mmu3->sets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 			mmu->ways = 1 << mmu3->ways;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 			mmu->u_dtlb = mmu3->u_dtlb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 			mmu->u_itlb = mmu3->u_itlb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 			mmu->sasid = mmu3->sasid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 		mmu4 = (struct bcr_mmu_4 *)&tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 		mmu->sets = 64 << mmu4->n_entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 		mmu->ways = mmu4->n_ways * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 		mmu->u_dtlb = mmu4->u_dtlb * 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 		mmu->u_itlb = mmu4->u_itlb * 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 		mmu->sasid = mmu4->sasid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 		pae_exists = mmu->pae = mmu4->pae;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 	int n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 	char super_pg[64] = "";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 	if (p_mmu->s_pg_sz_m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 		scnprintf(super_pg, 64, "%dM Super Page %s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 			  p_mmu->s_pg_sz_m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 	n += scnprintf(buf + n, len - n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 		       p_mmu->u_dtlb, p_mmu->u_itlb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 	return buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) int pae40_exist_but_not_enab(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 	return pae_exists && !is_pae40_enabled();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) void arc_mmu_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 	char str[256];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 	int compat = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 	pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 	 * Can't be done in processor.h due to header include dependencies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 	 * stack top size sanity check,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 	 * Can't be done in processor.h due to header include dependencies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 	 * Ensure that MMU features assumed by kernel exist in hardware.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 	 * For older ARC700 cpus, it has to be exact match, since the MMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 	 * revisions were not backwards compatible (MMUv3 TLB layout changed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 	 * so even if kernel for v2 didn't use any new cmds of v3, it would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 	 * still not work.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 	 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 	 * (will run older software).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 	if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 		compat = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 		compat = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	if (!compat) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 		panic("MMU ver %d doesn't match kernel built for %d...\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 		      mmu->ver, CONFIG_ARC_MMU_VER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 		panic("Hardware doesn't support PAE40\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 	/* Enable the MMU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 	/* In smp we use this reg for interrupt 1 scratch */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) #ifdef ARC_USE_SCRATCH_REG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 	if (pae40_exist_but_not_enab())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860)  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861)  * The mapping is Column-first.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862)  *		---------------------	-----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863)  *		|way0|way1|way2|way3|	|way0|way1|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864)  *		---------------------	-----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865)  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866)  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867)  *		~		    ~	~	  ~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868)  * [set127]	| 508| 509| 510| 511|	| 254| 255|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869)  *		---------------------	-----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870)  * For normal operations we don't(must not) care how above works since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871)  * MMU cmd getIndex(vaddr) abstracts that out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872)  * However for walking WAYS of a SET, we need to know this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) /* Handling of Duplicate PD (TLB entry) in MMU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877)  * -Could be due to buggy customer tapeouts or obscure kernel bugs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878)  * -MMU complaints not at the time of duplicate PD installation, but at the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879)  *      time of lookup matching multiple ways.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880)  * -Ideally these should never happen - but if they do - workaround by deleting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881)  *      the duplicate one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882)  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) volatile int dup_pd_silent; /* Be silent abt it or complain (default) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) 			  struct pt_regs *regs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) 	int set, n_ways = mmu->ways;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) 	n_ways = min(n_ways, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) 	BUG_ON(mmu->ways > 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) 	/* loop thru all sets of TLB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) 	for (set = 0; set < mmu->sets; set++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) 		int is_valid, way;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) 		unsigned int pd0[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) 		/* read out all the ways of current set */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) 		for (way = 0, is_valid = 0; way < n_ways; way++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) 			write_aux_reg(ARC_REG_TLBINDEX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) 					  SET_WAY_TO_IDX(mmu, set, way));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) 			is_valid |= pd0[way] & _PAGE_PRESENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) 			pd0[way] &= PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) 		/* If all the WAYS in SET are empty, skip to next SET */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) 		if (!is_valid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) 		/* Scan the set for duplicate ways: needs a nested loop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) 		for (way = 0; way < n_ways - 1; way++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) 			int n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) 			if (!pd0[way])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) 			for (n = way + 1; n < n_ways; n++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) 				if (pd0[way] != pd0[n])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) 				if (!dup_pd_silent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) 					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) 						pd0[way], set, way, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) 				 * clear entry @way and not @n.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) 				 * This is critical to our optimised loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) 				pd0[way] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) 				write_aux_reg(ARC_REG_TLBINDEX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) 						SET_WAY_TO_IDX(mmu, set, way));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) 				__tlb_entry_erase();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) /***********************************************************************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950)  * Diagnostic Routines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951)  *  -Called from Low Level TLB Handlers if things don;t look good
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952)  **********************************************************************/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957)  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958)  * don't match
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) 	__asm__ __volatile__("flag 1");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) 	unsigned int mmu_asid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) 	 * At the time of a TLB miss/installation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) 	 *   - HW version needs to match SW version
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) 	 *   - SW needs to have a valid ASID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) 	if (addr < 0x70000000 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) 	    ((mm_asid == MM_CTXT_NO_ASID) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) 		print_asid_mismatch(mm_asid, mmu_asid, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) #endif