Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *  linux/arch/alpha/kernel/time.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * This file contains the clocksource time handling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * 1997-01-09    Adrian Sun
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *      use interval timer if CONFIG_RTC=y
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *      fixed tick loss calculation in timer_interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  *      (round system clock to nearest tick instead of truncating)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  *      fixed algorithm in time_init for getting time from CMOS clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  *	fixed algorithm in do_gettimeofday() for calculating the precise time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  *	from processor cycle counter (now taking lost_ticks into account)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <linux/param.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #include <linux/ioport.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #include <linux/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #include <linux/bcd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #include <linux/profile.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #include <linux/irq_work.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #include <asm/hwrpb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #include <linux/mc146818rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #include <linux/timex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #include <linux/clocksource.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #include <linux/clockchips.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #include "proto.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #include "irq_impl.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) DEFINE_SPINLOCK(rtc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) EXPORT_SYMBOL(rtc_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) unsigned long est_cycle_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #ifdef CONFIG_IRQ_WORK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) DEFINE_PER_CPU(u8, irq_work_pending);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define set_irq_work_pending_flag()  __this_cpu_write(irq_work_pending, 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define test_irq_work_pending()      __this_cpu_read(irq_work_pending)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define clear_irq_work_pending()     __this_cpu_write(irq_work_pending, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) void arch_irq_work_raise(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	set_irq_work_pending_flag();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) #else  /* CONFIG_IRQ_WORK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define test_irq_work_pending()      0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define clear_irq_work_pending()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #endif /* CONFIG_IRQ_WORK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) static inline __u32 rpcc(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	return __builtin_alpha_rpcc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * The RTC as a clock_event_device primitive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) irqreturn_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) rtc_timer_interrupt(int irq, void *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	/* Don't run the hook for UNUSED or SHUTDOWN.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	if (likely(clockevent_state_periodic(ce)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		ce->event_handler(ce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	if (test_irq_work_pending()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 		clear_irq_work_pending();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		irq_work_run();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	/* This hook is for oneshot mode, which we don't support.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) static void __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) init_rtc_clockevent(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	*ce = (struct clock_event_device){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		.name = "rtc",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		.features = CLOCK_EVT_FEAT_PERIODIC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		.rating = 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		.cpumask = cpumask_of(cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		.set_next_event = rtc_ce_set_next_event,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)  * The QEMU clock as a clocksource primitive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) static u64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) qemu_cs_read(struct clocksource *cs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	return qemu_get_vmtime();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) static struct clocksource qemu_cs = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	.name                   = "qemu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	.rating                 = 400,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	.read                   = qemu_cs_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	.mask                   = CLOCKSOURCE_MASK(64),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	.max_idle_ns		= LONG_MAX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * The QEMU alarm as a clock_event_device primitive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) static int qemu_ce_shutdown(struct clock_event_device *ce)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	/* The mode member of CE is updated for us in generic code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	   Just make sure that the event is disabled.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	qemu_set_alarm_abs(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	qemu_set_alarm_rel(evt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) static irqreturn_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) qemu_timer_interrupt(int irq, void *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	ce->event_handler(ce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) static void __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) init_qemu_clockevent(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	int cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	*ce = (struct clock_event_device){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		.name = "qemu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		.features = CLOCK_EVT_FEAT_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		.rating = 400,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		.cpumask = cpumask_of(cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 		.set_state_shutdown = qemu_ce_shutdown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		.set_state_oneshot = qemu_ce_shutdown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		.tick_resume = qemu_ce_shutdown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		.set_next_event = qemu_ce_set_next_event,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) void __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) common_init_rtc(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	unsigned char x, sel = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	/* Reset periodic interrupt frequency.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)  	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	/* Test includes known working values on various platforms
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	   where 0x26 is wrong; we refuse to change those. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)  	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 		sel = RTC_REF_CLCK_32KHZ + 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) # error "Unknown HZ from arch/alpha/Kconfig"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	if (sel) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 		       CONFIG_HZ, sel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		CMOS_WRITE(sel, RTC_FREQ_SELECT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)  	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	/* Turn on periodic interrupts.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	x = CMOS_READ(RTC_CONTROL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	if (!(x & RTC_PIE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		printk("Turning on RTC interrupts.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 		x |= RTC_PIE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 		x &= ~(RTC_AIE | RTC_UIE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		CMOS_WRITE(x, RTC_CONTROL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	(void) CMOS_READ(RTC_INTR_FLAGS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	outb(0x36, 0x43);	/* pit counter 0: system timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	outb(0x00, 0x40);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	outb(0x00, 0x40);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	outb(0x31, 0x42);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	outb(0x13, 0x42);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	init_rtc_irq(NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) #ifndef CONFIG_ALPHA_WTINT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)  * The RPCC as a clocksource primitive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)  * While we have free-running timecounters running on all CPUs, and we make
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)  * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)  * with the wall clock, that initialization isn't kept up-to-date across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)  * different time counters in SMP mode.  Therefore we can only use this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)  * method when there's only one CPU enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)  * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)  * or stop altogether, while waiting for the interrupt.  Therefore we cannot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)  * use this method when WTINT is in use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) static u64 read_rpcc(struct clocksource *cs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	return rpcc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) static struct clocksource clocksource_rpcc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	.name                   = "rpcc",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	.rating                 = 300,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	.read                   = read_rpcc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	.mask                   = CLOCKSOURCE_MASK(32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) #endif /* ALPHA_WTINT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) /* Validate a computed cycle counter result against the known bounds for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)    the given processor core.  There's too much brokenness in the way of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)    timing hardware for any one method to work everywhere.  :-(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)    Return 0 if the result cannot be trusted, otherwise return the argument.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) static unsigned long __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) validate_cc_value(unsigned long cc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	static struct bounds {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		unsigned int min, max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	} cpu_hz[] __initdata = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		[EV4_CPU]    = {  100000000,  300000000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		[EV45_CPU]   = {  200000000,  300000000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 		[EV5_CPU]    = {  250000000,  433000000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		[EV56_CPU]   = {  333000000,  667000000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		[EV6_CPU]    = {  466000000,  600000000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		[EV67_CPU]   = {  600000000,  750000000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		[EV68AL_CPU] = {  750000000,  940000000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 		[EV68CB_CPU] = { 1000000000, 1333333333 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 		/* None of the following are shipping as of 2001-11-01.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	const unsigned int deviation = 10000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	struct percpu_struct *cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	unsigned int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	index = cpu->type & 0xffffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	/* If index out of bounds, no way to validate.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	if (index >= ARRAY_SIZE(cpu_hz))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 		return cc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	/* If index contains no data, no way to validate.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	if (cpu_hz[index].max == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 		return cc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	if (cc < cpu_hz[index].min - deviation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	    || cc > cpu_hz[index].max + deviation)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	return cc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)  * arch/i386/time.c.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) #define CALIBRATE_LATCH	0xffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) #define TIMEOUT_COUNT	0x100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) static unsigned long __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) calibrate_cc_with_pit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	int cc, count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	/* Set the Gate high, disable speaker */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	 * Now let's take care of CTC channel 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	 * Set the Gate high, program CTC channel 2 for mode 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	 * (interrupt on terminal count mode), binary count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	cc = rpcc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	cc = rpcc() - cc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	if (count <= 1 || count == TIMEOUT_COUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) /* The Linux interpretation of the CMOS clock register contents:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)    RTC registers show the second which has precisely just started.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)    Let's hope other operating systems interpret the RTC the same way.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) static unsigned long __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) rpcc_after_update_in_progress(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	return rpcc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) void __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) time_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	unsigned int cc1, cc2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	unsigned long cycle_freq, tolerance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	long diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	if (alpha_using_qemu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 		init_qemu_clockevent();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 		init_rtc_irq(qemu_timer_interrupt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	/* Calibrate CPU clock -- attempt #1.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	if (!est_cycle_freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	cc1 = rpcc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	/* Calibrate CPU clock -- attempt #2.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	if (!est_cycle_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 		cc1 = rpcc_after_update_in_progress();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 		cc2 = rpcc_after_update_in_progress();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 		est_cycle_freq = validate_cc_value(cc2 - cc1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		cc1 = cc2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	cycle_freq = hwrpb->cycle_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	if (est_cycle_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 		/* If the given value is within 250 PPM of what we calculated,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		   accept it.  Otherwise, use what we found.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		tolerance = cycle_freq / 4000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 		diff = cycle_freq - est_cycle_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		if (diff < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 			diff = -diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 		if ((unsigned long)diff > tolerance) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 			cycle_freq = est_cycle_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 			printk("HWRPB cycle frequency bogus.  "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 			       "Estimated %lu Hz\n", cycle_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 			est_cycle_freq = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	} else if (! validate_cc_value (cycle_freq)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 		printk("HWRPB cycle frequency bogus, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 		       "and unable to estimate a proper value!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	/* See above for restrictions on using clocksource_rpcc.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) #ifndef CONFIG_ALPHA_WTINT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	if (hwrpb->nr_processors == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 		clocksource_register_hz(&clocksource_rpcc, cycle_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	/* Startup the timer source. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	alpha_mv.init_rtc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	init_rtc_clockevent();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) /* Initialize the clock_event_device for secondary cpus.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) void __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) init_clockevent(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	if (alpha_using_qemu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 		init_qemu_clockevent();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 		init_rtc_clockevent();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) #endif