Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * include/asm-alpha/dma.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * use ISA-compatible dma.  The only extension is support for high-page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * registers that allow to set the top 8 bits of a 32-bit DMA address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * This register should be written last when setting up a DMA address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * as this will also enable DMA across 64 KB boundaries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * Written by Hennus Bergman, 1992.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * High DMA channel support & info by Hannu Savolainen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * and John Boyd, Nov. 1992.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #ifndef _ASM_DMA_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define _ASM_DMA_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define dma_outb	outb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define dma_inb		inb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * NOTES about DMA transfers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  *  controller 1: channels 0-3, byte operations, ports 00-1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  *  controller 2: channels 4-7, word operations, ports C0-DF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  *  - ALL registers are 8 bits only, regardless of transfer size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  *  - channel 4 is not used - cascades 1 into 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  *  - channels 0-3 are byte - addresses/counts are for physical bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  *  - channels 5-7 are word - addresses/counts are for physical words
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  *  - transfer count loaded to registers is 1 less than actual count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  *  - controller 2 offsets are all even (2x offsets for controller 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  *  - page registers for 0-3 use bit 0, represent 64K pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * DMA transfers are limited to the lower 16MB of _physical_ memory.  
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  * Note that addresses loaded into registers must be _physical_ addresses,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  * not logical addresses (which may differ if paging is active).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  *  Address mapping for channels 0-3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  *    |  ...  |   |  ... |   |  ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  *    |  ...  |   |  ... |   |  ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  *    |  ...  |   |  ... |   |  ... |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  *   P7  ...  P0  A7 ... A0  A7 ... A0   
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  *  Address mapping for channels 5-7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  *    |  ...  |   \   \   ... \  \  \  ... \  \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  *    |  ...  |     \   \   ... \  \  \  ... \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0   
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * the hardware level, so odd-byte transfers aren't possible).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  * and up to 128K bytes may be transferred on channels 5-7 in one operation. 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define MAX_DMA_CHANNELS	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)   ISA DMA limitations on Alpha platforms,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)   These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)   just a wiring limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) /* The maximum address for ISA DMA transfer on Alpha XL, due to an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)    hardware SIO limitation, is 64MB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) #define ALPHA_XL_MAX_ISA_DMA_ADDRESS		0x04000000UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) /* The maximum address for ISA DMA transfer on RUFFIAN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)    due to an hardware SIO limitation, is 16MB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS	0x01000000UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) /* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)    due to an hardware SIO chip limitation, is 2GB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) #define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS		0x80000000UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) #define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS		0x80000000UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)   Maximum address for all the others is the complete 32-bit bus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)   address space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) #define ALPHA_MAX_ISA_DMA_ADDRESS		0x100000000UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #ifdef CONFIG_ALPHA_GENERIC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) # define MAX_ISA_DMA_ADDRESS		(alpha_mv.max_isa_dma_address)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) # if defined(CONFIG_ALPHA_XL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #  define MAX_ISA_DMA_ADDRESS		ALPHA_XL_MAX_ISA_DMA_ADDRESS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) # elif defined(CONFIG_ALPHA_RUFFIAN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #  define MAX_ISA_DMA_ADDRESS		ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) # elif defined(CONFIG_ALPHA_SABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #  define MAX_ISA_DMA_ADDRESS		ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) # elif defined(CONFIG_ALPHA_ALCOR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #  define MAX_ISA_DMA_ADDRESS		ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) # else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #  define MAX_ISA_DMA_ADDRESS		ALPHA_MAX_ISA_DMA_ADDRESS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) /* If we have the iommu, we don't have any address limitations on DMA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)    Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)    like i386. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) #define MAX_DMA_ADDRESS		(alpha_mv.mv_pci_tbi ?	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 				 ~0UL : IDENT_ADDR + 0x01000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) /* 8237 DMA controllers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) /* DMA controller registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define DMA1_CMD_REG		0x08	/* command register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #define DMA1_STAT_REG		0x08	/* status register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) #define DMA1_REQ_REG            0x09    /* request register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) #define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) #define DMA1_MODE_REG		0x0B	/* mode register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) #define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) #define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) #define DMA1_EXT_MODE_REG	(0x400 | DMA1_MODE_REG)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) #define DMA2_CMD_REG		0xD0	/* command register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) #define DMA2_STAT_REG		0xD0	/* status register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) #define DMA2_REQ_REG            0xD2    /* request register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) #define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #define DMA2_MODE_REG		0xD6	/* mode register (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) #define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) #define DMA2_EXT_MODE_REG	(0x400 | DMA2_MODE_REG)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) #define DMA_ADDR_0              0x00    /* DMA address registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) #define DMA_ADDR_1              0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) #define DMA_ADDR_2              0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) #define DMA_ADDR_3              0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) #define DMA_ADDR_4              0xC0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) #define DMA_ADDR_5              0xC4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) #define DMA_ADDR_6              0xC8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) #define DMA_ADDR_7              0xCC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) #define DMA_CNT_0               0x01    /* DMA count registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) #define DMA_CNT_1               0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) #define DMA_CNT_2               0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) #define DMA_CNT_3               0x07
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) #define DMA_CNT_4               0xC2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) #define DMA_CNT_5               0xC6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) #define DMA_CNT_6               0xCA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) #define DMA_CNT_7               0xCE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) #define DMA_PAGE_0              0x87    /* DMA page registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) #define DMA_PAGE_1              0x83
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) #define DMA_PAGE_2              0x81
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) #define DMA_PAGE_3              0x82
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) #define DMA_PAGE_5              0x8B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) #define DMA_PAGE_6              0x89
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) #define DMA_PAGE_7              0x8A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) #define DMA_HIPAGE_0		(0x400 | DMA_PAGE_0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) #define DMA_HIPAGE_1		(0x400 | DMA_PAGE_1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) #define DMA_HIPAGE_2		(0x400 | DMA_PAGE_2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) #define DMA_HIPAGE_3		(0x400 | DMA_PAGE_3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) #define DMA_HIPAGE_4		(0x400 | DMA_PAGE_4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) #define DMA_HIPAGE_5		(0x400 | DMA_PAGE_5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) #define DMA_HIPAGE_6		(0x400 | DMA_PAGE_6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) #define DMA_HIPAGE_7		(0x400 | DMA_PAGE_7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) #define DMA_AUTOINIT	0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) extern spinlock_t  dma_spin_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) static __inline__ unsigned long claim_dma_lock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	spin_lock_irqsave(&dma_spin_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	return flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) static __inline__ void release_dma_lock(unsigned long flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	spin_unlock_irqrestore(&dma_spin_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) /* enable/disable a specific DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) static __inline__ void enable_dma(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	if (dmanr<=3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		dma_outb(dmanr,  DMA1_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 		dma_outb(dmanr & 3,  DMA2_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) static __inline__ void disable_dma(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	if (dmanr<=3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 		dma_outb(dmanr | 4,  DMA1_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) /* Clear the 'DMA Pointer Flip Flop'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)  * Use this once to initialize the FF to a known state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)  * After that, keep track of it. :-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)  * --- In order to do that, the DMA routines below should ---
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)  * --- only be used while interrupts are disabled! ---
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) static __inline__ void clear_dma_ff(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	if (dmanr<=3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 		dma_outb(0,  DMA1_CLEAR_FF_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		dma_outb(0,  DMA2_CLEAR_FF_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) /* set mode (above) for a specific DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	if (dmanr<=3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 		dma_outb(mode | dmanr,  DMA1_MODE_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) /* set extended mode for a specific DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	if (dmanr<=3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 		dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) /* Set only the page register bits of the transfer address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)  * This is used for successive transfers when we know the contents of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)  * the lower 16 bits of the DMA current address register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	switch(dmanr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 		case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 			dma_outb(pagenr, DMA_PAGE_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 			dma_outb((pagenr >> 8), DMA_HIPAGE_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 		case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 			dma_outb(pagenr, DMA_PAGE_1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 			dma_outb((pagenr >> 8), DMA_HIPAGE_1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 			dma_outb(pagenr, DMA_PAGE_2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 			dma_outb((pagenr >> 8), DMA_HIPAGE_2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 		case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 			dma_outb(pagenr, DMA_PAGE_3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 			dma_outb((pagenr >> 8), DMA_HIPAGE_3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 		case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 			dma_outb((pagenr >> 8), DMA_HIPAGE_5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 		case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 			dma_outb((pagenr >> 8), DMA_HIPAGE_6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 			dma_outb((pagenr >> 8), DMA_HIPAGE_7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) /* Set transfer address & page bits for specific DMA channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)  * Assumes dma flipflop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	if (dmanr <= 3)  {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309)             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	}  else  {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	set_dma_page(dmanr, a>>16);	/* set hipage last to enable 32-bit mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)  * a specific DMA channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)  * You must ensure the parameters are valid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)  * NOTE: from a manual: "the number of transfers is one more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)  * than the initial word count"! This is taken into account.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)  * Assumes dma flip-flop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)         count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	if (dmanr <= 3)  {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332)         } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)         }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) /* Get DMA residue count. After a DMA transfer, this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)  * should return zero. Reading this while a DMA transfer is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)  * still in progress will return unpredictable results.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)  * If called before the channel has been used, it may return 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)  * Otherwise, it returns the number of _bytes_ left to transfer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)  * Assumes DMA flip-flop is clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) static __inline__ int get_dma_residue(unsigned int dmanr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	/* using short to get 16-bit wrap around */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	unsigned short count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	count = 1 + dma_inb(io_port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	count += dma_inb(io_port) << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	return (dmanr<=3)? count : (count<<1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) /* These are in kernel/dma.c: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) extern void free_dma(unsigned int dmanr);	/* release it again */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) #define KERNEL_HAVE_CHECK_DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) extern int check_dma(unsigned int dmanr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) /* From PCI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) #ifdef CONFIG_PCI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) extern int isa_dma_bridge_buggy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) #define isa_dma_bridge_buggy 	(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) #endif /* _ASM_DMA_H */