^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) .. SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) .. include:: <isonum.txt>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) ===========================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) User Interface for Resource Control feature
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) ===========================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) :Copyright: |copy| 2016 Intel Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) :Authors: - Fenghua Yu <fenghua.yu@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) - Tony Luck <tony.luck@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) - Vikas Shivappa <vikas.shivappa@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) Intel refers to this feature as Intel Resource Director Technology(Intel(R) RDT).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) AMD refers to this feature as AMD Platform Quality of Service(AMD QoS).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) This feature is enabled by the CONFIG_X86_CPU_RESCTRL and the x86 /proc/cpuinfo
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) flag bits:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) ============================================= ================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) RDT (Resource Director Technology) Allocation "rdt_a"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) CAT (Cache Allocation Technology) "cat_l3", "cat_l2"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) CDP (Code and Data Prioritization) "cdp_l3", "cdp_l2"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) CQM (Cache QoS Monitoring) "cqm_llc", "cqm_occup_llc"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) MBM (Memory Bandwidth Monitoring) "cqm_mbm_total", "cqm_mbm_local"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) MBA (Memory Bandwidth Allocation) "mba"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) ============================================= ================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) To use the feature mount the file system::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) # mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps]] /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) mount options are:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) "cdp":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) Enable code/data prioritization in L3 cache allocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) "cdpl2":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) Enable code/data prioritization in L2 cache allocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) "mba_MBps":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) Enable the MBA Software Controller(mba_sc) to specify MBA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) bandwidth in MBps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) L2 and L3 CDP are controlled separately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) RDT features are orthogonal. A particular system may support only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) monitoring, only control, or both monitoring and control. Cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) pseudo-locking is a unique way of using cache control to "pin" or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) "lock" data in the cache. Details can be found in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) "Cache Pseudo-Locking".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) The mount succeeds if either of allocation or monitoring is present, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) only those files and directories supported by the system will be created.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) For more details on the behavior of the interface during monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) and allocation, see the "Resource alloc and monitor groups" section.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) Info directory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) ==============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) The 'info' directory contains information about the enabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) resources. Each resource has its own subdirectory. The subdirectory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) names reflect the resource names.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) Each subdirectory contains the following files with respect to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) allocation:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) Cache resource(L3/L2) subdirectory contains the following files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) related to allocation:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) "num_closids":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) The number of CLOSIDs which are valid for this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) resource. The kernel uses the smallest number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) CLOSIDs of all enabled resources as limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) "cbm_mask":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) The bitmask which is valid for this resource.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) This mask is equivalent to 100%.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) "min_cbm_bits":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) The minimum number of consecutive bits which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) must be set when writing a mask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) "shareable_bits":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) Bitmask of shareable resource with other executing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) entities (e.g. I/O). User can use this when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) setting up exclusive cache partitions. Note that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) some platforms support devices that have their
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) own settings for cache use which can over-ride
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) these bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) "bit_usage":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) Annotated capacity bitmasks showing how all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) instances of the resource are used. The legend is:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) "0":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) Corresponding region is unused. When the system's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) resources have been allocated and a "0" is found
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) in "bit_usage" it is a sign that resources are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) wasted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) "H":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) Corresponding region is used by hardware only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) but available for software use. If a resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) has bits set in "shareable_bits" but not all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) of these bits appear in the resource groups'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) schematas then the bits appearing in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) "shareable_bits" but no resource group will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) be marked as "H".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) "X":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) Corresponding region is available for sharing and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) used by hardware and software. These are the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) bits that appear in "shareable_bits" as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) well as a resource group's allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) "S":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) Corresponding region is used by software
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) and available for sharing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) "E":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) Corresponding region is used exclusively by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) one resource group. No sharing allowed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) "P":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) Corresponding region is pseudo-locked. No
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) sharing allowed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) Memory bandwidth(MB) subdirectory contains the following files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) with respect to allocation:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) "min_bandwidth":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) The minimum memory bandwidth percentage which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) user can request.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) "bandwidth_gran":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) The granularity in which the memory bandwidth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) percentage is allocated. The allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) b/w percentage is rounded off to the next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) control step available on the hardware. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) available bandwidth control steps are:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) min_bandwidth + N * bandwidth_gran.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) "delay_linear":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) Indicates if the delay scale is linear or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) non-linear. This field is purely informational
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) only.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) "thread_throttle_mode":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) Indicator on Intel systems of how tasks running on threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) of a physical core are throttled in cases where they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) request different memory bandwidth percentages:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) "max":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) the smallest percentage is applied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) to all threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) "per-thread":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) bandwidth percentages are directly applied to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) the threads running on the core
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) If RDT monitoring is available there will be an "L3_MON" directory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) with the following files:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) "num_rmids":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) The number of RMIDs available. This is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) upper bound for how many "CTRL_MON" + "MON"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) groups can be created.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) "mon_features":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) Lists the monitoring events if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) monitoring is enabled for the resource.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) "max_threshold_occupancy":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) Read/write file provides the largest value (in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) bytes) at which a previously used LLC_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) counter can be considered for re-use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) Finally, in the top level of the "info" directory there is a file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) named "last_cmd_status". This is reset with every "command" issued
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) via the file system (making new directories or writing to any of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) control files). If the command was successful, it will read as "ok".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) If the command failed, it will provide more information that can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) conveyed in the error returns from file operations. E.g.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) # echo L3:0=f7 > schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) bash: echo: write error: Invalid argument
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) # cat info/last_cmd_status
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) mask f7 has non-consecutive 1-bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) Resource alloc and monitor groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) =================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) Resource groups are represented as directories in the resctrl file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) system. The default group is the root directory which, immediately
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) after mounting, owns all the tasks and cpus in the system and can make
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) full use of all resources.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) On a system with RDT control features additional directories can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) created in the root directory that specify different amounts of each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) resource (see "schemata" below). The root and these additional top level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) directories are referred to as "CTRL_MON" groups below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) On a system with RDT monitoring the root directory and other top level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) directories contain a directory named "mon_groups" in which additional
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) directories can be created to monitor subsets of tasks in the CTRL_MON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) group that is their ancestor. These are called "MON" groups in the rest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) of this document.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) Removing a directory will move all tasks and cpus owned by the group it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) represents to the parent. Removing one of the created CTRL_MON groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) will automatically remove all MON groups below it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) All groups contain the following files:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) "tasks":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) Reading this file shows the list of all tasks that belong to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) this group. Writing a task id to the file will add a task to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) group. If the group is a CTRL_MON group the task is removed from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) whichever previous CTRL_MON group owned the task and also from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) any MON group that owned the task. If the group is a MON group,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) then the task must already belong to the CTRL_MON parent of this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) group. The task is removed from any previous MON group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) "cpus":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) Reading this file shows a bitmask of the logical CPUs owned by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) this group. Writing a mask to this file will add and remove
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) CPUs to/from this group. As with the tasks file a hierarchy is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) maintained where MON groups may only include CPUs owned by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) parent CTRL_MON group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) When the resource group is in pseudo-locked mode this file will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) only be readable, reflecting the CPUs associated with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) pseudo-locked region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) "cpus_list":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) Just like "cpus", only using ranges of CPUs instead of bitmasks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) When control is enabled all CTRL_MON groups will also contain:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) "schemata":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) A list of all the resources available to this group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) Each resource has its own line and format - see below for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) "size":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) Mirrors the display of the "schemata" file to display the size in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) bytes of each allocation instead of the bits representing the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) "mode":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) The "mode" of the resource group dictates the sharing of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) allocations. A "shareable" resource group allows sharing of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) allocations while an "exclusive" resource group does not. A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) cache pseudo-locked region is created by first writing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) "pseudo-locksetup" to the "mode" file before writing the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) pseudo-locked region's schemata to the resource group's "schemata"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) file. On successful pseudo-locked region creation the mode will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) automatically change to "pseudo-locked".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) When monitoring is enabled all MON groups will also contain:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) "mon_data":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) This contains a set of files organized by L3 domain and by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) RDT event. E.g. on a system with two L3 domains there will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) be subdirectories "mon_L3_00" and "mon_L3_01". Each of these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) directories have one file per event (e.g. "llc_occupancy",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) "mbm_total_bytes", and "mbm_local_bytes"). In a MON group these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) files provide a read out of the current value of the event for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) all tasks in the group. In CTRL_MON groups these files provide
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) the sum for all tasks in the CTRL_MON group and all tasks in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) MON groups. Please see example section for more details on usage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) Resource allocation rules
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) -------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) When a task is running the following rules define which resources are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) available to it:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 1) If the task is a member of a non-default group, then the schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) for that group is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 2) Else if the task belongs to the default group, but is running on a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) CPU that is assigned to some specific group, then the schemata for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) CPU's group is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 3) Otherwise the schemata for the default group is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) Resource monitoring rules
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) -------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 1) If a task is a member of a MON group, or non-default CTRL_MON group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) then RDT events for the task will be reported in that group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 2) If a task is a member of the default CTRL_MON group, but is running
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) on a CPU that is assigned to some specific group, then the RDT events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) for the task will be reported in that group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 3) Otherwise RDT events for the task will be reported in the root level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) "mon_data" group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) Notes on cache occupancy monitoring and control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) ===============================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) When moving a task from one group to another you should remember that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) this only affects *new* cache allocations by the task. E.g. you may have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) a task in a monitor group showing 3 MB of cache occupancy. If you move
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) to a new group and immediately check the occupancy of the old and new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) groups you will likely see that the old group is still showing 3 MB and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) the new group zero. When the task accesses locations still in cache from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) before the move, the h/w does not update any counters. On a busy system
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) you will likely see the occupancy in the old group go down as cache lines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) are evicted and re-used while the occupancy in the new group rises as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) the task accesses memory and loads into the cache are counted based on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) membership in the new group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) The same applies to cache allocation control. Moving a task to a group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) with a smaller cache partition will not evict any cache lines. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) process may continue to use them from the old partition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) Hardware uses CLOSid(Class of service ID) and an RMID(Resource monitoring ID)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) to identify a control group and a monitoring group respectively. Each of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) the resource groups are mapped to these IDs based on the kind of group. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) number of CLOSid and RMID are limited by the hardware and hence the creation of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) a "CTRL_MON" directory may fail if we run out of either CLOSID or RMID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) and creation of "MON" group may fail if we run out of RMIDs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) max_threshold_occupancy - generic concepts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) ------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) Note that an RMID once freed may not be immediately available for use as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) the RMID is still tagged the cache lines of the previous user of RMID.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) Hence such RMIDs are placed on limbo list and checked back if the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) occupancy has gone down. If there is a time when system has a lot of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) limbo RMIDs but which are not ready to be used, user may see an -EBUSY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) during mkdir.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) max_threshold_occupancy is a user configurable value to determine the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) occupancy at which an RMID can be freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) Schemata files - general concepts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) ---------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) Each line in the file describes one resource. The line starts with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) the name of the resource, followed by specific values to be applied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) in each of the instances of that resource on the system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) Cache IDs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) ---------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) On current generation systems there is one L3 cache per socket and L2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) caches are generally just shared by the hyperthreads on a core, but this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) isn't an architectural requirement. We could have multiple separate L3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) caches on a socket, multiple cores could share an L2 cache. So instead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) of using "socket" or "core" to define the set of logical cpus sharing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) a resource we use a "Cache ID". At a given cache level this will be a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) unique number across the whole system (but it isn't guaranteed to be a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) contiguous sequence, there may be gaps). To find the ID for each logical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) CPU look in /sys/devices/system/cpu/cpu*/cache/index*/id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) Cache Bit Masks (CBM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) ---------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) For cache resources we describe the portion of the cache that is available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) for allocation using a bitmask. The maximum value of the mask is defined
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) by each cpu model (and may be different for different cache levels). It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) is found using CPUID, but is also provided in the "info" directory of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) the resctrl file system in "info/{resource}/cbm_mask". Intel hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) requires that these masks have all the '1' bits in a contiguous block. So
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 0x3, 0x6 and 0xC are legal 4-bit masks with two bits set, but 0x5, 0x9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) and 0xA are not. On a system with a 20-bit mask each bit represents 5%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) of the capacity of the cache. You could partition the cache into four
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) Memory bandwidth Allocation and monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) ==========================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) For Memory bandwidth resource, by default the user controls the resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) by indicating the percentage of total memory bandwidth.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) The minimum bandwidth percentage value for each cpu model is predefined
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) and can be looked up through "info/MB/min_bandwidth". The bandwidth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) granularity that is allocated is also dependent on the cpu model and can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) be looked up at "info/MB/bandwidth_gran". The available bandwidth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) control steps are: min_bw + N * bw_gran. Intermediate values are rounded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) to the next control step available on the hardware.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) The bandwidth throttling is a core specific mechanism on some of Intel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) SKUs. Using a high bandwidth and a low bandwidth setting on two threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) sharing a core may result in both threads being throttled to use the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) low bandwidth (see "thread_throttle_mode").
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) The fact that Memory bandwidth allocation(MBA) may be a core
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) specific mechanism where as memory bandwidth monitoring(MBM) is done at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) the package level may lead to confusion when users try to apply control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) via the MBA and then monitor the bandwidth to see if the controls are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) effective. Below are such scenarios:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 1. User may *not* see increase in actual bandwidth when percentage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) values are increased:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) This can occur when aggregate L2 external bandwidth is more than L3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) external bandwidth. Consider an SKL SKU with 24 cores on a package and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) where L2 external is 10GBps (hence aggregate L2 external bandwidth is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 240GBps) and L3 external bandwidth is 100GBps. Now a workload with '20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) threads, having 50% bandwidth, each consuming 5GBps' consumes the max L3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) bandwidth of 100GBps although the percentage value specified is only 50%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) << 100%. Hence increasing the bandwidth percentage will not yield any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) more bandwidth. This is because although the L2 external bandwidth still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) has capacity, the L3 external bandwidth is fully used. Also note that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) this would be dependent on number of cores the benchmark is run on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 2. Same bandwidth percentage may mean different actual bandwidth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) depending on # of threads:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) For the same SKU in #1, a 'single thread, with 10% bandwidth' and '4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) thread, with 10% bandwidth' can consume upto 10GBps and 40GBps although
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) they have same percentage bandwidth of 10%. This is simply because as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) threads start using more cores in an rdtgroup, the actual bandwidth may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) increase or vary although user specified bandwidth percentage is same.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) In order to mitigate this and make the interface more user friendly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) resctrl added support for specifying the bandwidth in MBps as well. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) kernel underneath would use a software feedback mechanism or a "Software
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) Controller(mba_sc)" which reads the actual bandwidth using MBM counters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) and adjust the memory bandwidth percentages to ensure::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) "actual bandwidth < user specified bandwidth".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) By default, the schemata would take the bandwidth percentage values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) where as user can switch to the "MBA software controller" mode using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) a mount option 'mba_MBps'. The schemata format is specified in the below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) sections.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) L3 schemata file details (code and data prioritization disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) ----------------------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) With CDP disabled the L3 schemata format is::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) L3:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) L3 schemata file details (CDP enabled via mount option to resctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) ------------------------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) When CDP is enabled L3 control is split into two separate resources
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) so you can specify independent masks for code and data like this::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) L3DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) L3CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) L2 schemata file details
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) ------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) CDP is supported at L2 using the 'cdpl2' mount option. The schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) format is either::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) L2DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) L2CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) Memory bandwidth Allocation (default mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) ------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) Memory b/w domain is L3 cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) Memory bandwidth Allocation specified in MBps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) ---------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) Memory bandwidth domain is L3 cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) MB:<cache_id0>=bw_MBps0;<cache_id1>=bw_MBps1;...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) Reading/writing the schemata file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) ---------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) Reading the schemata file will show the state of all resources
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) on all domains. When writing you only need to specify those values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) which you wish to change. E.g.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) # cat schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) L3DATA:0=fffff;1=fffff;2=fffff;3=fffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) # echo "L3DATA:2=3c0;" > schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) # cat schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) L3DATA:0=fffff;1=fffff;2=3c0;3=fffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) Cache Pseudo-Locking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) ====================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) CAT enables a user to specify the amount of cache space that an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) application can fill. Cache pseudo-locking builds on the fact that a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) CPU can still read and write data pre-allocated outside its current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) allocated area on a cache hit. With cache pseudo-locking, data can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) preloaded into a reserved portion of cache that no application can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) fill, and from that point on will only serve cache hits. The cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) pseudo-locked memory is made accessible to user space where an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) application can map it into its virtual address space and thus have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) a region of memory with reduced average read latency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) The creation of a cache pseudo-locked region is triggered by a request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) from the user to do so that is accompanied by a schemata of the region
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) to be pseudo-locked. The cache pseudo-locked region is created as follows:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) - Create a CAT allocation CLOSNEW with a CBM matching the schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) from the user of the cache region that will contain the pseudo-locked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) memory. This region must not overlap with any current CAT allocation/CLOS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) on the system and no future overlap with this cache region is allowed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) while the pseudo-locked region exists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) - Create a contiguous region of memory of the same size as the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) - Flush the cache, disable hardware prefetchers, disable preemption.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) - Make CLOSNEW the active CLOS and touch the allocated memory to load
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) it into the cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) - Set the previous CLOS as active.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) - At this point the closid CLOSNEW can be released - the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) pseudo-locked region is protected as long as its CBM does not appear in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) any CAT allocation. Even though the cache pseudo-locked region will from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) this point on not appear in any CBM of any CLOS an application running with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) any CLOS will be able to access the memory in the pseudo-locked region since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) the region continues to serve cache hits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) - The contiguous region of memory loaded into the cache is exposed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) user-space as a character device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) Cache pseudo-locking increases the probability that data will remain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) in the cache via carefully configuring the CAT feature and controlling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) application behavior. There is no guarantee that data is placed in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) cache. Instructions like INVD, WBINVD, CLFLUSH, etc. can still evict
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) “locked” data from cache. Power management C-states may shrink or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) power off cache. Deeper C-states will automatically be restricted on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) pseudo-locked region creation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) It is required that an application using a pseudo-locked region runs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) with affinity to the cores (or a subset of the cores) associated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) with the cache on which the pseudo-locked region resides. A sanity check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) within the code will not allow an application to map pseudo-locked memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) unless it runs with affinity to cores associated with the cache on which the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) pseudo-locked region resides. The sanity check is only done during the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) initial mmap() handling, there is no enforcement afterwards and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) application self needs to ensure it remains affine to the correct cores.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) Pseudo-locking is accomplished in two stages:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 1) During the first stage the system administrator allocates a portion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) of cache that should be dedicated to pseudo-locking. At this time an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) equivalent portion of memory is allocated, loaded into allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) cache portion, and exposed as a character device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 2) During the second stage a user-space application maps (mmap()) the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) pseudo-locked memory into its address space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) Cache Pseudo-Locking Interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) ------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) A pseudo-locked region is created using the resctrl interface as follows:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 1) Create a new resource group by creating a new directory in /sys/fs/resctrl.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 2) Change the new resource group's mode to "pseudo-locksetup" by writing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) "pseudo-locksetup" to the "mode" file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 3) Write the schemata of the pseudo-locked region to the "schemata" file. All
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) bits within the schemata should be "unused" according to the "bit_usage"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) On successful pseudo-locked region creation the "mode" file will contain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) "pseudo-locked" and a new character device with the same name as the resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) group will exist in /dev/pseudo_lock. This character device can be mmap()'ed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) by user space in order to obtain access to the pseudo-locked memory region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) An example of cache pseudo-locked region creation and usage can be found below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) Cache Pseudo-Locking Debugging Interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) ----------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) The pseudo-locking debugging interface is enabled by default (if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) CONFIG_DEBUG_FS is enabled) and can be found in /sys/kernel/debug/resctrl.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) There is no explicit way for the kernel to test if a provided memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) location is present in the cache. The pseudo-locking debugging interface uses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) the tracing infrastructure to provide two ways to measure cache residency of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) the pseudo-locked region:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 1) Memory access latency using the pseudo_lock_mem_latency tracepoint. Data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) from these measurements are best visualized using a hist trigger (see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) example below). In this test the pseudo-locked region is traversed at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) a stride of 32 bytes while hardware prefetchers and preemption
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) are disabled. This also provides a substitute visualization of cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) hits and misses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 2) Cache hit and miss measurements using model specific precision counters if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) available. Depending on the levels of cache on the system the pseudo_lock_l2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) and pseudo_lock_l3 tracepoints are available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) When a pseudo-locked region is created a new debugfs directory is created for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) it in debugfs as /sys/kernel/debug/resctrl/<newdir>. A single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) write-only file, pseudo_lock_measure, is present in this directory. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) measurement of the pseudo-locked region depends on the number written to this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) debugfs file:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) writing "1" to the pseudo_lock_measure file will trigger the latency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) measurement captured in the pseudo_lock_mem_latency tracepoint. See
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) example below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) writing "2" to the pseudo_lock_measure file will trigger the L2 cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) residency (cache hits and misses) measurement captured in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) pseudo_lock_l2 tracepoint. See example below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) writing "3" to the pseudo_lock_measure file will trigger the L3 cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) residency (cache hits and misses) measurement captured in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) pseudo_lock_l3 tracepoint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) All measurements are recorded with the tracing infrastructure. This requires
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) the relevant tracepoints to be enabled before the measurement is triggered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) Example of latency debugging interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) In this example a pseudo-locked region named "newlock" was created. Here is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) how we can measure the latency in cycles of reading from this region and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) visualize this data with a histogram that is available if CONFIG_HIST_TRIGGERS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) is set::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) # :> /sys/kernel/debug/tracing/trace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) # echo 'hist:keys=latency' > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) # echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) # echo 1 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) # echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) # cat /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/hist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) # event histogram
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) # trigger info: hist:keys=latency:vals=hitcount:sort=hitcount:size=2048 [active]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) { latency: 456 } hitcount: 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) { latency: 50 } hitcount: 83
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) { latency: 36 } hitcount: 96
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) { latency: 44 } hitcount: 174
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) { latency: 48 } hitcount: 195
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) { latency: 46 } hitcount: 262
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) { latency: 42 } hitcount: 693
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) { latency: 40 } hitcount: 3204
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) { latency: 38 } hitcount: 3484
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) Totals:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) Hits: 8192
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) Entries: 9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) Dropped: 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) Example of cache hits/misses debugging
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) In this example a pseudo-locked region named "newlock" was created on the L2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) cache of a platform. Here is how we can obtain details of the cache hits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) and misses using the platform's precision counters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) # :> /sys/kernel/debug/tracing/trace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) # echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) # echo 2 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) # echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) # cat /sys/kernel/debug/tracing/trace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) # tracer: nop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) #
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) # _-----=> irqs-off
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) # / _----=> need-resched
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) # | / _---=> hardirq/softirq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) # || / _--=> preempt-depth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) # ||| / delay
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) # TASK-PID CPU# |||| TIMESTAMP FUNCTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) # | | | |||| | |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) pseudo_lock_mea-1672 [002] .... 3132.860500: pseudo_lock_l2: hits=4097 miss=0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) Examples for RDT allocation usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 1) Example 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) On a two socket machine (one L3 cache per socket) with just four bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) for cache bit masks, minimum b/w of 10% with a memory bandwidth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) granularity of 10%.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) # mount -t resctrl resctrl /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) # mkdir p0 p1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) # echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) # echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) The default resource group is unmodified, so we have access to all parts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) of all caches (its schemata file reads "L3:0=f;1=f").
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) Tasks that are under the control of group "p0" may only allocate from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) "lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) Tasks in group "p1" use the "lower" 50% of cache on both sockets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) Similarly, tasks that are under the control of group "p0" may use a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) maximum memory b/w of 50% on socket0 and 50% on socket 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) Tasks in group "p1" may also use 50% memory b/w on both sockets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) Note that unlike cache masks, memory b/w cannot specify whether these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) allocations can overlap or not. The allocations specifies the maximum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) b/w that the group may be able to use and the system admin can configure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) the b/w accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) If resctrl is using the software controller (mba_sc) then user can enter the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) max b/w in MB rather than the percentage values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) # echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) # echo "L3:0=3;1=3\nMB:0=1024;1=500" > /sys/fs/resctrl/p1/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) In the above example the tasks in "p1" and "p0" on socket 0 would use a max b/w
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) of 1024MB where as on socket 1 they would use 500MB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 2) Example 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) Again two sockets, but this time with a more realistic 20-bit mask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) Two real time tasks pid=1234 running on processor 0 and pid=5678 running on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) processor 1 on socket 0 on a 2-socket and dual core machine. To avoid noisy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) neighbors, each of the two real-time tasks exclusively occupies one quarter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) of L3 cache on socket 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) # mount -t resctrl resctrl /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) First we reset the schemata for the default group so that the "upper"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 50% of the L3 cache on socket 0 and 50% of memory b/w cannot be used by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) ordinary tasks::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) # echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) Next we make a resource group for our first real time task and give
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) it access to the "top" 25% of the cache on socket 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) # mkdir p0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) # echo "L3:0=f8000;1=fffff" > p0/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) Finally we move our first real time task into this resource group. We
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) also use taskset(1) to ensure the task always runs on a dedicated CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) on socket 0. Most uses of resource groups will also constrain which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) processors tasks run on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) # echo 1234 > p0/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) # taskset -cp 1 1234
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) Ditto for the second real time task (with the remaining 25% of cache)::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) # mkdir p1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) # echo "L3:0=7c00;1=fffff" > p1/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) # echo 5678 > p1/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) # taskset -cp 2 5678
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) For the same 2 socket system with memory b/w resource and CAT L3 the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) schemata would look like(Assume min_bandwidth 10 and bandwidth_gran is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 10):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) For our first real time task this would request 20% memory b/w on socket 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) For our second real time task this would request an other 20% memory b/w
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) on socket 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 3) Example 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) A single socket system which has real-time tasks running on core 4-7 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) non real-time workload assigned to core 0-3. The real-time tasks share text
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) and data, so a per task association is not required and due to interaction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) with the kernel it's desired that the kernel on these cores shares L3 with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) the tasks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) # mount -t resctrl resctrl /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) First we reset the schemata for the default group so that the "upper"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 50% of the L3 cache on socket 0, and 50% of memory bandwidth on socket 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) cannot be used by ordinary tasks::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) # echo "L3:0=3ff\nMB:0=50" > schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) Next we make a resource group for our real time cores and give it access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) to the "top" 50% of the cache on socket 0 and 50% of memory bandwidth on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) socket 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) # mkdir p0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) # echo "L3:0=ffc00\nMB:0=50" > p0/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) Finally we move core 4-7 over to the new group and make sure that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) kernel and the tasks running there get 50% of the cache. They should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) also get 50% of memory bandwidth assuming that the cores 4-7 are SMT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) siblings and only the real time threads are scheduled on the cores 4-7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) # echo F0 > p0/cpus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 4) Example 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) The resource groups in previous examples were all in the default "shareable"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) mode allowing sharing of their cache allocations. If one resource group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) configures a cache allocation then nothing prevents another resource group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) to overlap with that allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) In this example a new exclusive resource group will be created on a L2 CAT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) system with two L2 cache instances that can be configured with an 8-bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) capacity bitmask. The new exclusive resource group will be configured to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 25% of each cache instance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) # mount -t resctrl resctrl /sys/fs/resctrl/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) First, we observe that the default group is configured to allocate to all L2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) cache::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) # cat schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) L2:0=ff;1=ff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) We could attempt to create the new resource group at this point, but it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) fail because of the overlap with the schemata of the default group::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) # mkdir p0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) # echo 'L2:0=0x3;1=0x3' > p0/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) # cat p0/mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) shareable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) # echo exclusive > p0/mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) -sh: echo: write error: Invalid argument
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) # cat info/last_cmd_status
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) schemata overlaps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) To ensure that there is no overlap with another resource group the default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) resource group's schemata has to change, making it possible for the new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) resource group to become exclusive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) # echo 'L2:0=0xfc;1=0xfc' > schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) # echo exclusive > p0/mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) # grep . p0/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) p0/cpus:0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) p0/mode:exclusive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) p0/schemata:L2:0=03;1=03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) p0/size:L2:0=262144;1=262144
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) A new resource group will on creation not overlap with an exclusive resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) group::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) # mkdir p1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) # grep . p1/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) p1/cpus:0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) p1/mode:shareable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) p1/schemata:L2:0=fc;1=fc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) p1/size:L2:0=786432;1=786432
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) The bit_usage will reflect how the cache is used::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) # cat info/L2/bit_usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 0=SSSSSSEE;1=SSSSSSEE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) A resource group cannot be forced to overlap with an exclusive resource group::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) # echo 'L2:0=0x1;1=0x1' > p1/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) -sh: echo: write error: Invalid argument
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) # cat info/last_cmd_status
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) overlaps with exclusive group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) Example of Cache Pseudo-Locking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) Lock portion of L2 cache from cache id 1 using CBM 0x3. Pseudo-locked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) region is exposed at /dev/pseudo_lock/newlock that can be provided to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) application for argument to mmap().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) # mount -t resctrl resctrl /sys/fs/resctrl/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) Ensure that there are bits available that can be pseudo-locked, since only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) unused bits can be pseudo-locked the bits to be pseudo-locked needs to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) removed from the default resource group's schemata::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) # cat info/L2/bit_usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 0=SSSSSSSS;1=SSSSSSSS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) # echo 'L2:1=0xfc' > schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) # cat info/L2/bit_usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) 0=SSSSSSSS;1=SSSSSS00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) Create a new resource group that will be associated with the pseudo-locked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) region, indicate that it will be used for a pseudo-locked region, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) configure the requested pseudo-locked region capacity bitmask::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) # mkdir newlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) # echo pseudo-locksetup > newlock/mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) # echo 'L2:1=0x3' > newlock/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) On success the resource group's mode will change to pseudo-locked, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) bit_usage will reflect the pseudo-locked region, and the character device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) exposing the pseudo-locked region will exist::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) # cat newlock/mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) pseudo-locked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) # cat info/L2/bit_usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) 0=SSSSSSSS;1=SSSSSSPP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) # ls -l /dev/pseudo_lock/newlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) crw------- 1 root root 243, 0 Apr 3 05:01 /dev/pseudo_lock/newlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) * Example code to access one page of pseudo-locked cache region
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) * from user space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) #define _GNU_SOURCE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) #include <fcntl.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) #include <sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) #include <stdio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) #include <stdlib.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) #include <unistd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) #include <sys/mman.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) * It is required that the application runs with affinity to only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) * cores associated with the pseudo-locked region. Here the cpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) * is hardcoded for convenience of example.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) static int cpuid = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) int main(int argc, char *argv[])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) cpu_set_t cpuset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) long page_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) void *mapping;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) int dev_fd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) page_size = sysconf(_SC_PAGESIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) CPU_ZERO(&cpuset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) CPU_SET(cpuid, &cpuset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) ret = sched_setaffinity(0, sizeof(cpuset), &cpuset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) perror("sched_setaffinity");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) exit(EXIT_FAILURE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) dev_fd = open("/dev/pseudo_lock/newlock", O_RDWR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) if (dev_fd < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) perror("open");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) exit(EXIT_FAILURE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) mapping = mmap(0, page_size, PROT_READ | PROT_WRITE, MAP_SHARED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) dev_fd, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) if (mapping == MAP_FAILED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) perror("mmap");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) close(dev_fd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) exit(EXIT_FAILURE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) /* Application interacts with pseudo-locked memory @mapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) ret = munmap(mapping, page_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) perror("munmap");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) close(dev_fd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) exit(EXIT_FAILURE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) close(dev_fd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) exit(EXIT_SUCCESS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) Locking between applications
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) ----------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) Certain operations on the resctrl filesystem, composed of read/writes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) to/from multiple files, must be atomic.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) As an example, the allocation of an exclusive reservation of L3 cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) involves:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) 1. Read the cbmmasks from each directory or the per-resource "bit_usage"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) 2. Find a contiguous set of bits in the global CBM bitmask that is clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) in any of the directory cbmmasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) 3. Create a new directory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) 4. Set the bits found in step 2 to the new directory "schemata" file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) If two applications attempt to allocate space concurrently then they can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) end up allocating the same bits so the reservations are shared instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) exclusive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) To coordinate atomic operations on the resctrlfs and to avoid the problem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) above, the following locking procedure is recommended:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) Locking is based on flock, which is available in libc and also as a shell
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) script command
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) Write lock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) A) Take flock(LOCK_EX) on /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) B) Read/write the directory structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) C) funlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) Read lock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) A) Take flock(LOCK_SH) on /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) B) If success read the directory structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) C) funlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) Example with bash::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) # Atomically read directory structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) $ flock -s /sys/fs/resctrl/ find /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) # Read directory contents and create new subdirectory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) $ cat create-dir.sh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) find /sys/fs/resctrl/ > output.txt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) mask = function-of(output.txt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) mkdir /sys/fs/resctrl/newres/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) echo mask > /sys/fs/resctrl/newres/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) $ flock /sys/fs/resctrl/ ./create-dir.sh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) Example with C::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) * Example code do take advisory locks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) * before accessing resctrl filesystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) #include <sys/file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) #include <stdlib.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) void resctrl_take_shared_lock(int fd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) /* take shared lock on resctrl filesystem */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) ret = flock(fd, LOCK_SH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) perror("flock");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) exit(-1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) void resctrl_take_exclusive_lock(int fd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) /* release lock on resctrl filesystem */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) ret = flock(fd, LOCK_EX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) perror("flock");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) exit(-1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) void resctrl_release_lock(int fd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) /* take shared lock on resctrl filesystem */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) ret = flock(fd, LOCK_UN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) perror("flock");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) exit(-1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) void main(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) int fd, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) fd = open("/sys/fs/resctrl", O_DIRECTORY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) if (fd == -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) perror("open");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) exit(-1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) resctrl_take_shared_lock(fd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) /* code to read directory contents */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) resctrl_release_lock(fd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) resctrl_take_exclusive_lock(fd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) /* code to read and write directory contents */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) resctrl_release_lock(fd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) Examples for RDT Monitoring along with allocation usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) =======================================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) Reading monitored data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) ----------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) Reading an event file (for ex: mon_data/mon_L3_00/llc_occupancy) would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) show the current snapshot of LLC occupancy of the corresponding MON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) group or CTRL_MON group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) Example 1 (Monitor CTRL_MON group and subset of tasks in CTRL_MON group)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) ------------------------------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) On a two socket machine (one L3 cache per socket) with just four bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) for cache bit masks::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) # mount -t resctrl resctrl /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) # mkdir p0 p1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) # echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) # echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) # echo 5678 > p1/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) # echo 5679 > p1/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) The default resource group is unmodified, so we have access to all parts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) of all caches (its schemata file reads "L3:0=f;1=f").
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) Tasks that are under the control of group "p0" may only allocate from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) "lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) Tasks in group "p1" use the "lower" 50% of cache on both sockets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) Create monitor groups and assign a subset of tasks to each monitor group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) # cd /sys/fs/resctrl/p1/mon_groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) # mkdir m11 m12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) # echo 5678 > m11/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) # echo 5679 > m12/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) fetch data (data shown in bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) # cat m11/mon_data/mon_L3_00/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 16234000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) # cat m11/mon_data/mon_L3_01/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 14789000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) # cat m12/mon_data/mon_L3_00/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 16789000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) The parent ctrl_mon group shows the aggregated data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 31234000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) Example 2 (Monitor a task from its creation)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) --------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) On a two socket machine (one L3 cache per socket)::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) # mount -t resctrl resctrl /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) # mkdir p0 p1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) An RMID is allocated to the group once its created and hence the <cmd>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) below is monitored from its creation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) # echo $$ > /sys/fs/resctrl/p1/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) # <cmd>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) Fetch the data::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 31789000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) Example 3 (Monitor without CAT support or before creating CAT groups)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) ---------------------------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) Assume a system like HSW has only CQM and no CAT support. In this case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) the resctrl will still mount but cannot create CTRL_MON directories.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) But user can create different MON groups within the root group thereby
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) able to monitor all tasks including kernel threads.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) This can also be used to profile jobs cache size footprint before being
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) able to allocate them to different allocation groups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) # mount -t resctrl resctrl /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) # mkdir mon_groups/m01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) # mkdir mon_groups/m02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) # echo 3478 > /sys/fs/resctrl/mon_groups/m01/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) # echo 2467 > /sys/fs/resctrl/mon_groups/m02/tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) Monitor the groups separately and also get per domain data. From the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) below its apparent that the tasks are mostly doing work on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) domain(socket) 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_00/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 31234000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_01/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 34555
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_00/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 31234000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_01/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 32789
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) Example 4 (Monitor real time tasks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) -----------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) A single socket system which has real time tasks running on cores 4-7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) and non real time tasks on other cpus. We want to monitor the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) occupancy of the real time threads on these cores.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) # mount -t resctrl resctrl /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) # cd /sys/fs/resctrl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) # mkdir p1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) Move the cpus 4-7 over to p1::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) # echo f0 > p1/cpus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) View the llc occupancy snapshot::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) # cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 11234000