^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) .. SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) =============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) Kernel Stacks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) =============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) Kernel stacks on x86-64 bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) ===========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) Most of the text from Keith Owens, hacked by AK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) x86_64 page size (PAGE_SIZE) is 4K.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) Like all other architectures, x86_64 has a kernel stack for every
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) active thread. These thread stacks are THREAD_SIZE (2*PAGE_SIZE) big.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) These stacks contain useful data as long as a thread is alive or a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) zombie. While the thread is in user space the kernel stack is empty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) except for the thread_info structure at the bottom.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) In addition to the per thread stacks, there are specialized stacks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) associated with each CPU. These stacks are only used while the kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) is in control on that CPU; when a CPU returns to user space the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) specialized stacks contain no useful data. The main CPU stacks are:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * Interrupt stack. IRQ_STACK_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) Used for external hardware interrupts. If this is the first external
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) hardware interrupt (i.e. not a nested hardware interrupt) then the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) kernel switches from the current task to the interrupt stack. Like
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) the split thread and interrupt stacks on i386, this gives more room
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) for kernel interrupt processing without having to increase the size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) of every per thread stack.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) The interrupt stack is also used when processing a softirq.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) Switching to the kernel interrupt stack is done by software based on a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) per CPU interrupt nest counter. This is needed because x86-64 "IST"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) hardware stacks cannot nest without races.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) x86_64 also has a feature which is not available on i386, the ability
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) to automatically switch to a new stack for designated events such as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) double fault or NMI, which makes it easier to handle these unusual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) events on x86_64. This feature is called the Interrupt Stack Table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) (IST). There can be up to 7 IST entries per CPU. The IST code is an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) index into the Task State Segment (TSS). The IST entries in the TSS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) point to dedicated stacks; each stack can be a different size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) An IST is selected by a non-zero value in the IST field of an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) interrupt-gate descriptor. When an interrupt occurs and the hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) loads such a descriptor, the hardware automatically sets the new stack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) pointer based on the IST value, then invokes the interrupt handler. If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) the interrupt came from user mode, then the interrupt handler prologue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) will switch back to the per-thread stack. If software wants to allow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) nested IST interrupts then the handler must adjust the IST values on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) entry to and exit from the interrupt handler. (This is occasionally
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) done, e.g. for debug exceptions.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) Events with different IST codes (i.e. with different stacks) can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) nested. For example, a debug interrupt can safely be interrupted by an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) NMI. arch/x86_64/kernel/entry.S::paranoidentry adjusts the stack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) pointers on entry to and exit from all IST events, in theory allowing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) IST events with the same code to be nested. However in most cases, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) stack size allocated to an IST assumes no nesting for the same code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) If that assumption is ever broken then the stacks will become corrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) The currently assigned IST stacks are:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * ESTACK_DF. EXCEPTION_STKSZ (PAGE_SIZE).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) Used for interrupt 8 - Double Fault Exception (#DF).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) Invoked when handling one exception causes another exception. Happens
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) when the kernel is very confused (e.g. kernel stack pointer corrupt).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) Using a separate stack allows the kernel to recover from it well enough
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) in many cases to still output an oops.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) * ESTACK_NMI. EXCEPTION_STKSZ (PAGE_SIZE).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) Used for non-maskable interrupts (NMI).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) NMI can be delivered at any time, including when the kernel is in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) middle of switching stacks. Using IST for NMI events avoids making
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) assumptions about the previous state of the kernel stack.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) * ESTACK_DB. EXCEPTION_STKSZ (PAGE_SIZE).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) Used for hardware debug interrupts (interrupt 1) and for software
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) debug interrupts (INT3).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) When debugging a kernel, debug interrupts (both hardware and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) software) can occur at any time. Using IST for these interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) avoids making assumptions about the previous state of the kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) stack.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) To handle nested #DB correctly there exist two instances of DB stacks. On
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #DB entry the IST stackpointer for #DB is switched to the second instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) so a nested #DB starts from a clean stack. The nested #DB switches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) the IST stackpointer to a guard hole to catch triple nesting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * ESTACK_MCE. EXCEPTION_STKSZ (PAGE_SIZE).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) Used for interrupt 18 - Machine Check Exception (#MC).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) MCE can be delivered at any time, including when the kernel is in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) middle of switching stacks. Using IST for MCE events avoids making
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) assumptions about the previous state of the kernel stack.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) For more details see the Intel IA32 or AMD AMD64 architecture manuals.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) Printing backtraces on x86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) ==========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) The question about the '?' preceding function names in an x86 stacktrace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) keeps popping up, here's an indepth explanation. It helps if the reader
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) stares at print_context_stack() and the whole machinery in and around
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) arch/x86/kernel/dumpstack.c.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) Adapted from Ingo's mail, Message-ID: <20150521101614.GA10889@gmail.com>:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) We always scan the full kernel stack for return addresses stored on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) the kernel stack(s) [1]_, from stack top to stack bottom, and print out
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) anything that 'looks like' a kernel text address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) If it fits into the frame pointer chain, we print it without a question
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) mark, knowing that it's part of the real backtrace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) If the address does not fit into our expected frame pointer chain we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) still print it, but we print a '?'. It can mean two things:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) - either the address is not part of the call chain: it's just stale
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) values on the kernel stack, from earlier function calls. This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) the common case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) - or it is part of the call chain, but the frame pointer was not set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) up properly within the function, so we don't recognize it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) This way we will always print out the real call chain (plus a few more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) entries), regardless of whether the frame pointer was set up correctly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) or not - but in most cases we'll get the call chain right as well. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) entries printed are strictly in stack order, so you can deduce more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) information from that as well.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) The most important property of this method is that we _never_ lose
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) information: we always strive to print _all_ addresses on the stack(s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) that look like kernel text addresses, so if debug information is wrong,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) we still print out the real call chain as well - just with more question
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) marks than ideal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) .. [1] For things like IRQ and IST stacks, we also scan those stacks, in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) the right order, and try to cross from one stack into another
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) reconstructing the call chain. This works most of the time.