Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) .. _slub:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) ==========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) Short users guide for SLUB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) ==========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) The basic philosophy of SLUB is very different from SLAB. SLAB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) requires rebuilding the kernel to activate debug options for all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) slab caches. SLUB always includes full debugging but it is off by default.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) SLUB can enable debugging only for selected slabs in order to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) an impact on overall system performance which may make a bug more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) difficult to find.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) In order to switch debugging on one can add an option ``slub_debug``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) to the kernel command line. That will enable full debugging for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) all slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) Typically one would then use the ``slabinfo`` command to get statistical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) data and perform operation on the slabs. By default ``slabinfo`` only lists
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) slabs that have data in them. See "slabinfo -h" for more options when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) running the command. ``slabinfo`` can be compiled with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	gcc -o slabinfo tools/vm/slabinfo.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) Some of the modes of operation of ``slabinfo`` require that slub debugging
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) be enabled on the command line. F.e. no tracking information will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) available without debugging on and validation can only partially
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) be performed if debugging was not switched on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) Some more sophisticated uses of slub_debug:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) -------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) Parameters may be given to ``slub_debug``. If none is specified then full
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) debugging is enabled. Format:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) slub_debug=<Debug-Options>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	Enable options for all slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) slub_debug=<Debug-Options>,<slab name1>,<slab name2>,...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	Enable options only for select slabs (no spaces
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	after a comma)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) Multiple blocks of options for all slabs or selected slabs can be given, with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) blocks of options delimited by ';'. The last of "all slabs" blocks is applied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) to all slabs except those that match one of the "select slabs" block. Options
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) of the first "select slabs" blocks that matches the slab's name are applied.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) Possible debug options are::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	F		Sanity checks on (enables SLAB_DEBUG_CONSISTENCY_CHECKS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 			Sorry SLAB legacy issues)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	Z		Red zoning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	P		Poisoning (object and padding)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	U		User tracking (free and alloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	T		Trace (please only use on single slabs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	A		Enable failslab filter mark for the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	O		Switch debugging off for caches that would have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 			caused higher minimum slab orders
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	-		Switch all debugging off (useful if the kernel is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 			configured with CONFIG_SLUB_DEBUG_ON)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) F.e. in order to boot just with sanity checks and red zoning one would specify::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	slub_debug=FZ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) Trying to find an issue in the dentry cache? Try::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	slub_debug=,dentry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) to only enable debugging on the dentry cache.  You may use an asterisk at the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) end of the slab name, in order to cover all slabs with the same prefix.  For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) example, here's how you can poison the dentry cache as well as all kmalloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) slabs::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	slub_debug=P,kmalloc-*,dentry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) Red zoning and tracking may realign the slab.  We can just apply sanity checks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) to the dentry cache with::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	slub_debug=F,dentry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) Debugging options may require the minimum possible slab order to increase as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) a result of storing the metadata (for example, caches with PAGE_SIZE object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) sizes).  This has a higher liklihood of resulting in slab allocation errors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) in low memory situations or if there's high fragmentation of memory.  To
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) switch off debugging for such caches by default, use::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	slub_debug=O
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) You can apply different options to different list of slab names, using blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) of options. This will enable red zoning for dentry and user tracking for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) kmalloc. All other slabs will not get any debugging enabled::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	slub_debug=Z,dentry;U,kmalloc-*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) You can also enable options (e.g. sanity checks and poisoning) for all caches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) except some that are deemed too performance critical and don't need to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) debugged by specifying global debug options followed by a list of slab names
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) with "-" as options::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	slub_debug=FZ;-,zs_handle,zspage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) The state of each debug option for a slab can be found in the respective files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) under::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	/sys/kernel/slab/<slab name>/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) If the file contains 1, the option is enabled, 0 means disabled. The debug
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) options from the ``slub_debug`` parameter translate to the following files::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	F	sanity_checks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	Z	red_zone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	P	poison
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	U	store_user
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	T	trace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	A	failslab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) Careful with tracing: It may spew out lots of information and never stop if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) used on the wrong slab.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) Slab merging
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) ============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) If no debug options are specified then SLUB may merge similar slabs together
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) in order to reduce overhead and increase cache hotness of objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) ``slabinfo -a`` displays which slabs were merged together.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) Slab validation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) SLUB can validate all object if the kernel was booted with slub_debug. In
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) order to do so you must have the ``slabinfo`` tool. Then you can do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	slabinfo -v
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) which will test all objects. Output will be generated to the syslog.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) This also works in a more limited way if boot was without slab debug.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) In that case ``slabinfo -v`` simply tests all reachable objects. Usually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) these are in the cpu slabs and the partial slabs. Full slabs are not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) tracked by SLUB in a non debug situation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) Getting more performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) ========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) To some degree SLUB's performance is limited by the need to take the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) list_lock once in a while to deal with partial slabs. That overhead is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) governed by the order of the allocation for each slab. The allocations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) can be influenced by kernel parameters:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) .. slub_min_objects=x		(default 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) .. slub_min_order=x		(default 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) .. slub_max_order=x		(default 3 (PAGE_ALLOC_COSTLY_ORDER))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) ``slub_min_objects``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	allows to specify how many objects must at least fit into one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	slab in order for the allocation order to be acceptable.  In
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	general slub will be able to perform this number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	allocations on a slab without consulting centralized resources
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	(list_lock) where contention may occur.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) ``slub_min_order``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	specifies a minimum order of slabs. A similar effect like
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	``slub_min_objects``.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) ``slub_max_order``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	specified the order at which ``slub_min_objects`` should no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	longer be checked. This is useful to avoid SLUB trying to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	generate super large order pages to fit ``slub_min_objects``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	of a slab cache with large object sizes into one high order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	page. Setting command line parameter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	``debug_guardpage_minorder=N`` (N > 0), forces setting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	``slub_max_order`` to 0, what cause minimum possible order of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	slabs allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) SLUB Debug output
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) =================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) Here is a sample of slub debug output::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)  ====================================================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)  BUG kmalloc-8: Right Redzone overwritten
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)  --------------------------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)  INFO: 0xc90f6d28-0xc90f6d2b. First byte 0x00 instead of 0xcc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)  INFO: Slab 0xc528c530 flags=0x400000c3 inuse=61 fp=0xc90f6d58
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)  INFO: Object 0xc90f6d20 @offset=3360 fp=0xc90f6d58
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)  INFO: Allocated in get_modalias+0x61/0xf5 age=53 cpu=1 pid=554
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)  Bytes b4 (0xc90f6d10): 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)  Object   (0xc90f6d20): 31 30 31 39 2e 30 30 35                         1019.005
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)  Redzone  (0xc90f6d28): 00 cc cc cc                                     .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)  Padding  (0xc90f6d50): 5a 5a 5a 5a 5a 5a 5a 5a                         ZZZZZZZZ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)    [<c010523d>] dump_trace+0x63/0x1eb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)    [<c01053df>] show_trace_log_lvl+0x1a/0x2f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)    [<c010601d>] show_trace+0x12/0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)    [<c0106035>] dump_stack+0x16/0x18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)    [<c017e0fa>] object_err+0x143/0x14b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)    [<c017e2cc>] check_object+0x66/0x234
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)    [<c017eb43>] __slab_free+0x239/0x384
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)    [<c017f446>] kfree+0xa6/0xc6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)    [<c02e2335>] get_modalias+0xb9/0xf5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)    [<c02e23b7>] dmi_dev_uevent+0x27/0x3c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)    [<c027866a>] dev_uevent+0x1ad/0x1da
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)    [<c0205024>] kobject_uevent_env+0x20a/0x45b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)    [<c020527f>] kobject_uevent+0xa/0xf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)    [<c02779f1>] store_uevent+0x4f/0x58
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)    [<c027758e>] dev_attr_store+0x29/0x2f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)    [<c01bec4f>] sysfs_write_file+0x16e/0x19c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)    [<c0183ba7>] vfs_write+0xd1/0x15a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)    [<c01841d7>] sys_write+0x3d/0x72
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)    [<c0104112>] sysenter_past_esp+0x5f/0x99
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)    [<b7f7b410>] 0xb7f7b410
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)    =======================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)  FIX kmalloc-8: Restoring Redzone 0xc90f6d28-0xc90f6d2b=0xcc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) If SLUB encounters a corrupted object (full detection requires the kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) to be booted with slub_debug) then the following output will be dumped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) into the syslog:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 1. Description of the problem encountered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)    This will be a message in the system log starting with::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)      ===============================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)      BUG <slab cache affected>: <What went wrong>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)      -----------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)      INFO: <corruption start>-<corruption_end> <more info>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)      INFO: Slab <address> <slab information>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)      INFO: Object <address> <object information>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)      INFO: Allocated in <kernel function> age=<jiffies since alloc> cpu=<allocated by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	cpu> pid=<pid of the process>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)      INFO: Freed in <kernel function> age=<jiffies since free> cpu=<freed by cpu>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	pid=<pid of the process>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)    (Object allocation / free information is only available if SLAB_STORE_USER is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)    set for the slab. slub_debug sets that option)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 2. The object contents if an object was involved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)    Various types of lines can follow the BUG SLUB line:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)    Bytes b4 <address> : <bytes>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	Shows a few bytes before the object where the problem was detected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	Can be useful if the corruption does not stop with the start of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)    Object <address> : <bytes>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	The bytes of the object. If the object is inactive then the bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	typically contain poison values. Any non-poison value shows a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	corruption by a write after free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)    Redzone <address> : <bytes>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	The Redzone following the object. The Redzone is used to detect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	writes after the object. All bytes should always have the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	value. If there is any deviation then it is due to a write after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	the object boundary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	(Redzone information is only available if SLAB_RED_ZONE is set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	slub_debug sets that option)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)    Padding <address> : <bytes>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	Unused data to fill up the space in order to get the next object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	properly aligned. In the debug case we make sure that there are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	at least 4 bytes of padding. This allows the detection of writes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	before the object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 3. A stackdump
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)    The stackdump describes the location where the error was detected. The cause
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)    of the corruption is may be more likely found by looking at the function that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)    allocated or freed the object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 4. Report on how the problem was dealt with in order to ensure the continued
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)    operation of the system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)    These are messages in the system log beginning with::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	FIX <slab cache affected>: <corrective action taken>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)    In the above sample SLUB found that the Redzone of an active object has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)    been overwritten. Here a string of 8 characters was written into a slab that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)    has the length of 8 characters. However, a 8 character string needs a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)    terminating 0. That zero has overwritten the first byte of the Redzone field.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)    After reporting the details of the issue encountered the FIX SLUB message
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)    tells us that SLUB has restored the Redzone to its proper value and then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)    system operations continue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) Emergency operations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) ====================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) Minimal debugging (sanity checks alone) can be enabled by booting with::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	slub_debug=F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) This will be generally be enough to enable the resiliency features of slub
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) which will keep the system running even if a bad kernel component will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) keep corrupting objects. This may be important for production systems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) Performance will be impacted by the sanity checks and there will be a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) continual stream of error messages to the syslog but no additional memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) will be used (unlike full debugging).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) No guarantees. The kernel component still needs to be fixed. Performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) may be optimized further by locating the slab that experiences corruption
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) and enabling debugging only for that cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) I.e.::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	slub_debug=F,dentry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) If the corruption occurs by writing after the end of the object then it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) may be advisable to enable a Redzone to avoid corrupting the beginning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) of other objects::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	slub_debug=FZ,dentry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) Extended slabinfo mode and plotting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) ===================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) The ``slabinfo`` tool has a special 'extended' ('-X') mode that includes:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)  - Slabcache Totals
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327)  - Slabs sorted by size (up to -N <num> slabs, default 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)  - Slabs sorted by loss (up to -N <num> slabs, default 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) Additionally, in this mode ``slabinfo`` does not dynamically scale
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) sizes (G/M/K) and reports everything in bytes (this functionality is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) also available to other slabinfo modes via '-B' option) which makes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) reporting more precise and accurate. Moreover, in some sense the `-X'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) mode also simplifies the analysis of slabs' behaviour, because its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) output can be plotted using the ``slabinfo-gnuplot.sh`` script. So it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) pushes the analysis from looking through the numbers (tons of numbers)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) to something easier -- visual analysis.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) To generate plots:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) a) collect slabinfo extended records, for example::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	while [ 1 ]; do slabinfo -X >> FOO_STATS; sleep 1; done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) b) pass stats file(-s) to ``slabinfo-gnuplot.sh`` script::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	slabinfo-gnuplot.sh FOO_STATS [FOO_STATS2 .. FOO_STATSN]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)    The ``slabinfo-gnuplot.sh`` script will pre-processes the collected records
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)    and generates 3 png files (and 3 pre-processing cache files) per STATS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)    file:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)    - Slabcache Totals: FOO_STATS-totals.png
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353)    - Slabs sorted by size: FOO_STATS-slabs-by-size.png
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)    - Slabs sorted by loss: FOO_STATS-slabs-by-loss.png
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) Another use case, when ``slabinfo-gnuplot.sh`` can be useful, is when you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) need to compare slabs' behaviour "prior to" and "after" some code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) modification.  To help you out there, ``slabinfo-gnuplot.sh`` script
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) can 'merge' the `Slabcache Totals` sections from different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) measurements. To visually compare N plots:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) a) Collect as many STATS1, STATS2, .. STATSN files as you need::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	while [ 1 ]; do slabinfo -X >> STATS<X>; sleep 1; done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) b) Pre-process those STATS files::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	slabinfo-gnuplot.sh STATS1 STATS2 .. STATSN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) c) Execute ``slabinfo-gnuplot.sh`` in '-t' mode, passing all of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)    generated pre-processed \*-totals::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	slabinfo-gnuplot.sh -t STATS1-totals STATS2-totals .. STATSN-totals
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)    This will produce a single plot (png file).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)    Plots, expectedly, can be large so some fluctuations or small spikes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)    can go unnoticed. To deal with that, ``slabinfo-gnuplot.sh`` has two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)    options to 'zoom-in'/'zoom-out':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)    a) ``-s %d,%d`` -- overwrites the default image width and height
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)    b) ``-r %d,%d`` -- specifies a range of samples to use (for example,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)       in ``slabinfo -X >> FOO_STATS; sleep 1;`` case, using a ``-r
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384)       40,60`` range will plot only samples collected between 40th and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385)       60th seconds).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) Christoph Lameter, May 30, 2007
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) Sergey Senozhatsky, October 23, 2015