Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) .. SPDX-License-Identifier: GFDL-1.1-no-invariants-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) .. _lirc_dev_intro:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) ************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) Introduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) ************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) LIRC stands for Linux Infrared Remote Control. The LIRC device interface is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) a bi-directional interface for transporting raw IR and decoded scancodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) data between userspace and kernelspace. Fundamentally, it is just a chardev
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) (/dev/lircX, for X = 0, 1, 2, ...), with a number of standard struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) file_operations defined on it. With respect to transporting raw IR and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) decoded scancodes to and fro, the essential fops are read, write and ioctl.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) It is also possible to attach a BPF program to a LIRC device for decoding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) raw IR into scancodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) Example dmesg output upon a driver registering w/LIRC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) .. code-block:: none
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)     $ dmesg |grep lirc_dev
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)     rc rc0: lirc_dev: driver mceusb registered at minor = 0, raw IR receiver, raw IR transmitter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) What you should see for a chardev:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) .. code-block:: none
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)     $ ls -l /dev/lirc*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)     crw-rw---- 1 root root 248, 0 Jul 2 22:20 /dev/lirc0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) Note that the package `v4l-utils <https://git.linuxtv.org/v4l-utils.git/>`_
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) contains tools for working with LIRC devices:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  - ir-ctl: can receive raw IR and transmit IR, as well as query LIRC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)    device features.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  - ir-keytable: can load keymaps; allows you to set IR kernel protocols; load
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)    BPF IR decoders and test IR decoding. Some BPF IR decoders are also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)    provided.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) .. _lirc_modes:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) **********
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) LIRC modes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) **********
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) LIRC supports some modes of receiving and sending IR codes, as shown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) on the following table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) .. _lirc-mode-scancode:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) .. _lirc-scancode-flag-toggle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) .. _lirc-scancode-flag-repeat:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) ``LIRC_MODE_SCANCODE``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)     This mode is for both sending and receiving IR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)     For transmitting (aka sending), create a ``struct lirc_scancode`` with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)     the desired scancode set in the ``scancode`` member, :c:type:`rc_proto`
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)     set to the :ref:`IR protocol <Remote_controllers_Protocols>`, and all other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)     members set to 0. Write this struct to the lirc device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)     For receiving, you read ``struct lirc_scancode`` from the LIRC device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)     The ``scancode`` field is set to the received scancode and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)     :ref:`IR protocol <Remote_controllers_Protocols>` is set in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)     :c:type:`rc_proto`. If the scancode maps to a valid key code, this is set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)     in the ``keycode`` field, else it is set to ``KEY_RESERVED``.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)     The ``flags`` can have ``LIRC_SCANCODE_FLAG_TOGGLE`` set if the toggle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)     bit is set in protocols that support it (e.g. rc-5 and rc-6), or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)     ``LIRC_SCANCODE_FLAG_REPEAT`` for when a repeat is received for protocols
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)     that support it (e.g. nec).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)     In the Sanyo and NEC protocol, if you hold a button on remote, rather than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)     repeating the entire scancode, the remote sends a shorter message with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)     no scancode, which just means button is held, a "repeat". When this is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)     received, the ``LIRC_SCANCODE_FLAG_REPEAT`` is set and the scancode and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)     keycode is repeated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)     With nec, there is no way to distinguish "button hold" from "repeatedly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)     pressing the same button". The rc-5 and rc-6 protocols have a toggle bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)     When a button is released and pressed again, the toggle bit is inverted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)     If the toggle bit is set, the ``LIRC_SCANCODE_FLAG_TOGGLE`` is set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)     The ``timestamp`` field is filled with the time nanoseconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)     (in ``CLOCK_MONOTONIC``) when the scancode was decoded.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) .. _lirc-mode-mode2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) ``LIRC_MODE_MODE2``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)     The driver returns a sequence of pulse and space codes to userspace,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)     as a series of u32 values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)     This mode is used only for IR receive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)     The upper 8 bits determine the packet type, and the lower 24 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)     the payload. Use ``LIRC_VALUE()`` macro to get the payload, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)     the macro ``LIRC_MODE2()`` will give you the type, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)     is one of:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)     ``LIRC_MODE2_PULSE``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)         Signifies the presence of IR in microseconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)     ``LIRC_MODE2_SPACE``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)         Signifies absence of IR in microseconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)     ``LIRC_MODE2_FREQUENCY``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)         If measurement of the carrier frequency was enabled with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)         :ref:`lirc_set_measure_carrier_mode` then this packet gives you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)         the carrier frequency in Hertz.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)     ``LIRC_MODE2_TIMEOUT``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)         If timeout reports are enabled with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)         :ref:`lirc_set_rec_timeout_reports`, when the timeout set with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)         :ref:`lirc_set_rec_timeout` expires due to no IR being detected,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)         this packet will be sent, with the number of microseconds with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)         no IR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) .. _lirc-mode-pulse:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) ``LIRC_MODE_PULSE``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)     In pulse mode, a sequence of pulse/space integer values are written to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)     lirc device using :ref:`lirc-write`.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)     The values are alternating pulse and space lengths, in microseconds. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)     first and last entry must be a pulse, so there must be an odd number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)     of entries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)     This mode is used only for IR send.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) ********************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) BPF based IR decoder
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) ********************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) The kernel has support for decoding the most common
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) :ref:`IR protocols <Remote_controllers_Protocols>`, but there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) are many protocols which are not supported. To support these, it is possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) to load an BPF program which does the decoding. This can only be done on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) LIRC devices which support reading raw IR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) First, using the `bpf(2)`_ syscall with the ``BPF_LOAD_PROG`` argument,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) program must be loaded of type ``BPF_PROG_TYPE_LIRC_MODE2``. Once attached
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) to the LIRC device, this program will be called for each pulse, space or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) timeout event on the LIRC device. The context for the BPF program is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) pointer to a unsigned int, which is a :ref:`LIRC_MODE_MODE2 <lirc-mode-mode2>`
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) value. When the program has decoded the scancode, it can be submitted using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) the BPF functions ``bpf_rc_keydown()`` or ``bpf_rc_repeat()``. Mouse or pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) movements can be reported using ``bpf_rc_pointer_rel()``.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) Once you have the file descriptor for the ``BPF_PROG_TYPE_LIRC_MODE2`` BPF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) program, it can be attached to the LIRC device using the `bpf(2)`_ syscall.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) The target must be the file descriptor for the LIRC device, and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) attach type must be ``BPF_LIRC_MODE2``. No more than 64 BPF programs can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) attached to a single LIRC device at a time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) .. _bpf(2): http://man7.org/linux/man-pages/man2/bpf.2.html