Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) ====================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) Overview of Linux kernel SPI support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) ====================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) 02-Feb-2012
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) What is SPI?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) ------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) link used to connect microcontrollers to sensors, memory, and peripherals.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) It's a simple "de facto" standard, not complicated enough to acquire a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) standardization body.  SPI uses a master/slave configuration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) The three signal wires hold a clock (SCK, often on the order of 10 MHz),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) and parallel data lines with "Master Out, Slave In" (MOSI) or "Master In,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) Slave Out" (MISO) signals.  (Other names are also used.)  There are four
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) clocking modes through which data is exchanged; mode-0 and mode-3 are most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) commonly used.  Each clock cycle shifts data out and data in; the clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) doesn't cycle except when there is a data bit to shift.  Not all data bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) are used though; not every protocol uses those full duplex capabilities.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) SPI masters use a fourth "chip select" line to activate a given SPI slave
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) device, so those three signal wires may be connected to several chips
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) in parallel.  All SPI slaves support chipselects; they are usually active
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) low signals, labeled nCSx for slave 'x' (e.g. nCS0).  Some devices have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) other signals, often including an interrupt to the master.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) Unlike serial busses like USB or SMBus, even low level protocols for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) SPI slave functions are usually not interoperable between vendors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) (except for commodities like SPI memory chips).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)   - SPI may be used for request/response style device protocols, as with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)     touchscreen sensors and memory chips.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)   - It may also be used to stream data in either direction (half duplex),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)     or both of them at the same time (full duplex).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)   - Some devices may use eight bit words.  Others may use different word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)     lengths, such as streams of 12-bit or 20-bit digital samples.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)   - Words are usually sent with their most significant bit (MSB) first,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)     but sometimes the least significant bit (LSB) goes first instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)   - Sometimes SPI is used to daisy-chain devices, like shift registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) In the same way, SPI slaves will only rarely support any kind of automatic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) discovery/enumeration protocol.  The tree of slave devices accessible from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) a given SPI master will normally be set up manually, with configuration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) SPI is only one of the names used by such four-wire protocols, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) most controllers have no problem handling "MicroWire" (think of it as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) half-duplex SPI, for request/response protocols), SSP ("Synchronous
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) Serial Protocol"), PSP ("Programmable Serial Protocol"), and other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) related protocols.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) Some chips eliminate a signal line by combining MOSI and MISO, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) limiting themselves to half-duplex at the hardware level.  In fact
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) some SPI chips have this signal mode as a strapping option.  These
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) can be accessed using the same programming interface as SPI, but of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) course they won't handle full duplex transfers.  You may find such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) chips described as using "three wire" signaling: SCK, data, nCSx.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) (That data line is sometimes called MOMI or SISO.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) Microcontrollers often support both master and slave sides of the SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) protocol.  This document (and Linux) supports both the master and slave
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) sides of SPI interactions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) Who uses it?  On what kinds of systems?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) ---------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) Linux developers using SPI are probably writing device drivers for embedded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) systems boards.  SPI is used to control external chips, and it is also a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) protocol supported by every MMC or SD memory card.  (The older "DataFlash"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) cards, predating MMC cards but using the same connectors and card shape,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) support only SPI.)  Some PC hardware uses SPI flash for BIOS code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) SPI slave chips range from digital/analog converters used for analog
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) sensors and codecs, to memory, to peripherals like USB controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) or Ethernet adapters; and more.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) Most systems using SPI will integrate a few devices on a mainboard.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) Some provide SPI links on expansion connectors; in cases where no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) dedicated SPI controller exists, GPIO pins can be used to create a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) low speed "bitbanging" adapter.  Very few systems will "hotplug" an SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) controller; the reasons to use SPI focus on low cost and simple operation,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) and if dynamic reconfiguration is important, USB will often be a more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) appropriate low-pincount peripheral bus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) Many microcontrollers that can run Linux integrate one or more I/O
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) interfaces with SPI modes.  Given SPI support, they could use MMC or SD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) cards without needing a special purpose MMC/SD/SDIO controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) I'm confused.  What are these four SPI "clock modes"?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) -----------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) It's easy to be confused here, and the vendor documentation you'll
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) find isn't necessarily helpful.  The four modes combine two mode bits:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  - CPOL indicates the initial clock polarity.  CPOL=0 means the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)    clock starts low, so the first (leading) edge is rising, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)    the second (trailing) edge is falling.  CPOL=1 means the clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)    starts high, so the first (leading) edge is falling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  - CPHA indicates the clock phase used to sample data; CPHA=0 says
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)    sample on the leading edge, CPHA=1 means the trailing edge.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)    Since the signal needs to stablize before it's sampled, CPHA=0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)    implies that its data is written half a clock before the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)    clock edge.  The chipselect may have made it become available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) Chip specs won't always say "uses SPI mode X" in as many words,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) but their timing diagrams will make the CPOL and CPHA modes clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) In the SPI mode number, CPOL is the high order bit and CPHA is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) low order bit.  So when a chip's timing diagram shows the clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) starting low (CPOL=0) and data stabilized for sampling during the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) trailing clock edge (CPHA=1), that's SPI mode 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) Note that the clock mode is relevant as soon as the chipselect goes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) active.  So the master must set the clock to inactive before selecting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) a slave, and the slave can tell the chosen polarity by sampling the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) clock level when its select line goes active.  That's why many devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) support for example both modes 0 and 3:  they don't care about polarity,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) and always clock data in/out on rising clock edges.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) How do these driver programming interfaces work?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) ------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) The <linux/spi/spi.h> header file includes kerneldoc, as does the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) main source code, and you should certainly read that chapter of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) kernel API document.  This is just an overview, so you get the big
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) picture before those details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) SPI requests always go into I/O queues.  Requests for a given SPI device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) are always executed in FIFO order, and complete asynchronously through
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) completion callbacks.  There are also some simple synchronous wrappers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) for those calls, including ones for common transaction types like writing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) a command and then reading its response.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) There are two types of SPI driver, here called:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)   Controller drivers ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)         controllers may be built into System-On-Chip
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	processors, and often support both Master and Slave roles.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	These drivers touch hardware registers and may use DMA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	Or they can be PIO bitbangers, needing just GPIO pins.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)   Protocol drivers ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)         these pass messages through the controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	driver to communicate with a Slave or Master device on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	other side of an SPI link.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) So for example one protocol driver might talk to the MTD layer to export
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) data to filesystems stored on SPI flash like DataFlash; and others might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) control audio interfaces, present touchscreen sensors as input interfaces,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) or monitor temperature and voltage levels during industrial processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) And those might all be sharing the same controller driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) A "struct spi_device" encapsulates the controller-side interface between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) those two types of drivers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) There is a minimal core of SPI programming interfaces, focussing on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) using the driver model to connect controller and protocol drivers using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) device tables provided by board specific initialization code.  SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) shows up in sysfs in several locations::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)    /sys/devices/.../CTLR ... physical node for a given SPI controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)    /sys/devices/.../CTLR/spiB.C ... spi_device on bus "B",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	chipselect C, accessed through CTLR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)    /sys/bus/spi/devices/spiB.C ... symlink to that physical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	.../CTLR/spiB.C device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)    /sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	that should be used with this device (for hotplug/coldplug)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)    /sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)    /sys/class/spi_master/spiB ... symlink (or actual device node) to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	a logical node which could hold class related state for the SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	master controller managing bus "B".  All spiB.* devices share one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	physical SPI bus segment, with SCLK, MOSI, and MISO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)    /sys/devices/.../CTLR/slave ... virtual file for (un)registering the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	slave device for an SPI slave controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	Writing the driver name of an SPI slave handler to this file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	registers the slave device; writing "(null)" unregisters the slave
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	Reading from this file shows the name of the slave device ("(null)"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	if not registered).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)    /sys/class/spi_slave/spiB ... symlink (or actual device node) to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	a logical node which could hold class related state for the SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	slave controller on bus "B".  When registered, a single spiB.*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	device is present here, possible sharing the physical SPI bus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	segment with other SPI slave devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) Note that the actual location of the controller's class state depends
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) on whether you enabled CONFIG_SYSFS_DEPRECATED or not.  At this time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) the only class-specific state is the bus number ("B" in "spiB"), so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) those /sys/class entries are only useful to quickly identify busses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) How does board-specific init code declare SPI devices?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) ------------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) Linux needs several kinds of information to properly configure SPI devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) That information is normally provided by board-specific code, even for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) chips that do support some of automated discovery/enumeration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) Declare Controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) ^^^^^^^^^^^^^^^^^^^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) The first kind of information is a list of what SPI controllers exist.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) For System-on-Chip (SOC) based boards, these will usually be platform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) devices, and the controller may need some platform_data in order to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) operate properly.  The "struct platform_device" will include resources
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) like the physical address of the controller's first register and its IRQ.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) Platforms will often abstract the "register SPI controller" operation,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) maybe coupling it with code to initialize pin configurations, so that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) the arch/.../mach-*/board-*.c files for several boards can all share the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) same basic controller setup code.  This is because most SOCs have several
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) SPI-capable controllers, and only the ones actually usable on a given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) board should normally be set up and registered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) So for example arch/.../mach-*/board-*.c files might have code like::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	#include <mach/spi.h>	/* for mysoc_spi_data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	/* if your mach-* infrastructure doesn't support kernels that can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	 * run on multiple boards, pdata wouldn't benefit from "__init".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	static struct mysoc_spi_data pdata __initdata = { ... };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	static __init board_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 		...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 		/* this board only uses SPI controller #2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 		mysoc_register_spi(2, &pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) And SOC-specific utility code might look something like::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	#include <mach/spi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	static struct platform_device spi2 = { ... };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	void mysoc_register_spi(unsigned n, struct mysoc_spi_data *pdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		struct mysoc_spi_data *pdata2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		pdata2 = kmalloc(sizeof *pdata2, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		*pdata2 = pdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 		...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 		if (n == 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 			spi2->dev.platform_data = pdata2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 			register_platform_device(&spi2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 			/* also: set up pin modes so the spi2 signals are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 			 * visible on the relevant pins ... bootloaders on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 			 * production boards may already have done this, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 			 * developer boards will often need Linux to do it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) Notice how the platform_data for boards may be different, even if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) same SOC controller is used.  For example, on one board SPI might use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) an external clock, where another derives the SPI clock from current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) settings of some master clock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) Declare Slave Devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) ^^^^^^^^^^^^^^^^^^^^^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) The second kind of information is a list of what SPI slave devices exist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) on the target board, often with some board-specific data needed for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) driver to work correctly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) Normally your arch/.../mach-*/board-*.c files would provide a small table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) listing the SPI devices on each board.  (This would typically be only a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) small handful.)  That might look like::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	static struct ads7846_platform_data ads_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		.vref_delay_usecs	= 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		.x_plate_ohms		= 580,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 		.y_plate_ohms		= 410,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	static struct spi_board_info spi_board_info[] __initdata = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 		.modalias	= "ads7846",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		.platform_data	= &ads_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		.mode		= SPI_MODE_0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		.irq		= GPIO_IRQ(31),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		.max_speed_hz	= 120000 /* max sample rate at 3V */ * 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		.bus_num	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		.chip_select	= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) Again, notice how board-specific information is provided; each chip may need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) several types.  This example shows generic constraints like the fastest SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) clock to allow (a function of board voltage in this case) or how an IRQ pin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) is wired, plus chip-specific constraints like an important delay that's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) changed by the capacitance at one pin.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) (There's also "controller_data", information that may be useful to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) controller driver.  An example would be peripheral-specific DMA tuning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) data or chipselect callbacks.  This is stored in spi_device later.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) The board_info should provide enough information to let the system work
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) without the chip's driver being loaded.  The most troublesome aspect of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) that is likely the SPI_CS_HIGH bit in the spi_device.mode field, since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) sharing a bus with a device that interprets chipselect "backwards" is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) not possible until the infrastructure knows how to deselect it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) Then your board initialization code would register that table with the SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) infrastructure, so that it's available later when the SPI master controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) driver is registered::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	spi_register_board_info(spi_board_info, ARRAY_SIZE(spi_board_info));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) Like with other static board-specific setup, you won't unregister those.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) The widely used "card" style computers bundle memory, cpu, and little else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) onto a card that's maybe just thirty square centimeters.  On such systems,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) your ``arch/.../mach-.../board-*.c`` file would primarily provide information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) about the devices on the mainboard into which such a card is plugged.  That
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) certainly includes SPI devices hooked up through the card connectors!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) Non-static Configurations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) ^^^^^^^^^^^^^^^^^^^^^^^^^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) Developer boards often play by different rules than product boards, and one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) example is the potential need to hotplug SPI devices and/or controllers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) For those cases you might need to use spi_busnum_to_master() to look
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) up the spi bus master, and will likely need spi_new_device() to provide the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) board info based on the board that was hotplugged.  Of course, you'd later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) call at least spi_unregister_device() when that board is removed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) When Linux includes support for MMC/SD/SDIO/DataFlash cards through SPI, those
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) configurations will also be dynamic.  Fortunately, such devices all support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) basic device identification probes, so they should hotplug normally.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) How do I write an "SPI Protocol Driver"?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) ----------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) Most SPI drivers are currently kernel drivers, but there's also support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) for userspace drivers.  Here we talk only about kernel drivers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) SPI protocol drivers somewhat resemble platform device drivers::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	static struct spi_driver CHIP_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 		.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 			.name		= "CHIP",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 			.owner		= THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 			.pm		= &CHIP_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 		.probe		= CHIP_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 		.remove		= CHIP_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) The driver core will automatically attempt to bind this driver to any SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) device whose board_info gave a modalias of "CHIP".  Your probe() code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) might look like this unless you're creating a device which is managing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) a bus (appearing under /sys/class/spi_master).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	static int CHIP_probe(struct spi_device *spi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		struct CHIP			*chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 		struct CHIP_platform_data	*pdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 		/* assuming the driver requires board-specific data: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 		pdata = &spi->dev.platform_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 		if (!pdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 		/* get memory for driver's per-chip state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 		chip = kzalloc(sizeof *chip, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		if (!chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 		spi_set_drvdata(spi, chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 		... etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) As soon as it enters probe(), the driver may issue I/O requests to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) the SPI device using "struct spi_message".  When remove() returns,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) or after probe() fails, the driver guarantees that it won't submit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) any more such messages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)   - An spi_message is a sequence of protocol operations, executed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)     as one atomic sequence.  SPI driver controls include:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405)       + when bidirectional reads and writes start ... by how its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)         sequence of spi_transfer requests is arranged;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)       + which I/O buffers are used ... each spi_transfer wraps a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)         buffer for each transfer direction, supporting full duplex
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410)         (two pointers, maybe the same one in both cases) and half
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411)         duplex (one pointer is NULL) transfers;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)       + optionally defining short delays after transfers ... using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)         the spi_transfer.delay_usecs setting (this delay can be the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)         only protocol effect, if the buffer length is zero);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417)       + whether the chipselect becomes inactive after a transfer and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)         any delay ... by using the spi_transfer.cs_change flag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)       + hinting whether the next message is likely to go to this same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)         device ... using the spi_transfer.cs_change flag on the last
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	transfer in that atomic group, and potentially saving costs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	for chip deselect and select operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)   - Follow standard kernel rules, and provide DMA-safe buffers in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)     your messages.  That way controller drivers using DMA aren't forced
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)     to make extra copies unless the hardware requires it (e.g. working
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)     around hardware errata that force the use of bounce buffering).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)     If standard dma_map_single() handling of these buffers is inappropriate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)     you can use spi_message.is_dma_mapped to tell the controller driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)     that you've already provided the relevant DMA addresses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434)   - The basic I/O primitive is spi_async().  Async requests may be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)     issued in any context (irq handler, task, etc) and completion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436)     is reported using a callback provided with the message.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437)     After any detected error, the chip is deselected and processing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)     of that spi_message is aborted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440)   - There are also synchronous wrappers like spi_sync(), and wrappers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)     like spi_read(), spi_write(), and spi_write_then_read().  These
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442)     may be issued only in contexts that may sleep, and they're all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443)     clean (and small, and "optional") layers over spi_async().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445)   - The spi_write_then_read() call, and convenience wrappers around
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)     it, should only be used with small amounts of data where the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447)     cost of an extra copy may be ignored.  It's designed to support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)     common RPC-style requests, such as writing an eight bit command
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449)     and reading a sixteen bit response -- spi_w8r16() being one its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)     wrappers, doing exactly that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) Some drivers may need to modify spi_device characteristics like the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) transfer mode, wordsize, or clock rate.  This is done with spi_setup(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) which would normally be called from probe() before the first I/O is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) done to the device.  However, that can also be called at any time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) that no message is pending for that device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) While "spi_device" would be the bottom boundary of the driver, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) upper boundaries might include sysfs (especially for sensor readings),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) the input layer, ALSA, networking, MTD, the character device framework,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) or other Linux subsystems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) Note that there are two types of memory your driver must manage as part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) of interacting with SPI devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)   - I/O buffers use the usual Linux rules, and must be DMA-safe.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467)     You'd normally allocate them from the heap or free page pool.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468)     Don't use the stack, or anything that's declared "static".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470)   - The spi_message and spi_transfer metadata used to glue those
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471)     I/O buffers into a group of protocol transactions.  These can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472)     be allocated anywhere it's convenient, including as part of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)     other allocate-once driver data structures.  Zero-init these.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) If you like, spi_message_alloc() and spi_message_free() convenience
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) routines are available to allocate and zero-initialize an spi_message
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) with several transfers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) How do I write an "SPI Master Controller Driver"?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) -------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) An SPI controller will probably be registered on the platform_bus; write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) a driver to bind to the device, whichever bus is involved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) The main task of this type of driver is to provide an "spi_master".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) Use spi_alloc_master() to allocate the master, and spi_master_get_devdata()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) to get the driver-private data allocated for that device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	struct spi_master	*master;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	struct CONTROLLER	*c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	master = spi_alloc_master(dev, sizeof *c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	if (!master)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	c = spi_master_get_devdata(master);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) The driver will initialize the fields of that spi_master, including the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) bus number (maybe the same as the platform device ID) and three methods
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) used to interact with the SPI core and SPI protocol drivers.  It will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) also initialize its own internal state.  (See below about bus numbering
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) and those methods.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) After you initialize the spi_master, then use spi_register_master() to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) publish it to the rest of the system. At that time, device nodes for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) controller and any predeclared spi devices will be made available, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) the driver model core will take care of binding them to drivers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) If you need to remove your SPI controller driver, spi_unregister_master()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) will reverse the effect of spi_register_master().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) Bus Numbering
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) ^^^^^^^^^^^^^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) Bus numbering is important, since that's how Linux identifies a given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) SPI bus (shared SCK, MOSI, MISO).  Valid bus numbers start at zero.  On
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) SOC systems, the bus numbers should match the numbers defined by the chip
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) manufacturer.  For example, hardware controller SPI2 would be bus number 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) and spi_board_info for devices connected to it would use that number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) If you don't have such hardware-assigned bus number, and for some reason
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) you can't just assign them, then provide a negative bus number.  That will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) then be replaced by a dynamically assigned number. You'd then need to treat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) this as a non-static configuration (see above).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) SPI Master Methods
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) ^^^^^^^^^^^^^^^^^^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) ``master->setup(struct spi_device *spi)``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	This sets up the device clock rate, SPI mode, and word sizes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	Drivers may change the defaults provided by board_info, and then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	call spi_setup(spi) to invoke this routine.  It may sleep.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	Unless each SPI slave has its own configuration registers, don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	change them right away ... otherwise drivers could corrupt I/O
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	that's in progress for other SPI devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	.. note::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 		BUG ALERT:  for some reason the first version of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 		many spi_master drivers seems to get this wrong.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 		When you code setup(), ASSUME that the controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 		is actively processing transfers for another device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) ``master->cleanup(struct spi_device *spi)``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	Your controller driver may use spi_device.controller_state to hold
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	state it dynamically associates with that device.  If you do that,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	be sure to provide the cleanup() method to free that state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) ``master->prepare_transfer_hardware(struct spi_master *master)``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	This will be called by the queue mechanism to signal to the driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	that a message is coming in soon, so the subsystem requests the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	driver to prepare the transfer hardware by issuing this call.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	This may sleep.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) ``master->unprepare_transfer_hardware(struct spi_master *master)``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	This will be called by the queue mechanism to signal to the driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	that there are no more messages pending in the queue and it may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	relax the hardware (e.g. by power management calls). This may sleep.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) ``master->transfer_one_message(struct spi_master *master, struct spi_message *mesg)``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	The subsystem calls the driver to transfer a single message while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	queuing transfers that arrive in the meantime. When the driver is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 	finished with this message, it must call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	spi_finalize_current_message() so the subsystem can issue the next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	message. This may sleep.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) ``master->transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *transfer)``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	The subsystem calls the driver to transfer a single transfer while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	queuing transfers that arrive in the meantime. When the driver is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	finished with this transfer, it must call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	spi_finalize_current_transfer() so the subsystem can issue the next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 	transfer. This may sleep. Note: transfer_one and transfer_one_message
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	are mutually exclusive; when both are set, the generic subsystem does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	not call your transfer_one callback.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	Return values:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	* negative errno: error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	* 0: transfer is finished
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	* 1: transfer is still in progress
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) ``master->set_cs_timing(struct spi_device *spi, u8 setup_clk_cycles, u8 hold_clk_cycles, u8 inactive_clk_cycles)``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	This method allows SPI client drivers to request SPI master controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	for configuring device specific CS setup, hold and inactive timing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	requirements.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) Deprecated Methods
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) ^^^^^^^^^^^^^^^^^^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) ``master->transfer(struct spi_device *spi, struct spi_message *message)``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	This must not sleep. Its responsibility is to arrange that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	transfer happens and its complete() callback is issued. The two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	will normally happen later, after other transfers complete, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	if the controller is idle it will need to be kickstarted. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	method is not used on queued controllers and must be NULL if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	transfer_one_message() and (un)prepare_transfer_hardware() are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	implemented.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) SPI Message Queue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) ^^^^^^^^^^^^^^^^^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) If you are happy with the standard queueing mechanism provided by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) SPI subsystem, just implement the queued methods specified above. Using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) the message queue has the upside of centralizing a lot of code and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) providing pure process-context execution of methods. The message queue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) can also be elevated to realtime priority on high-priority SPI traffic.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) Unless the queueing mechanism in the SPI subsystem is selected, the bulk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) of the driver will be managing the I/O queue fed by the now deprecated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) function transfer().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) That queue could be purely conceptual.  For example, a driver used only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) for low-frequency sensor access might be fine using synchronous PIO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) But the queue will probably be very real, using message->queue, PIO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) often DMA (especially if the root filesystem is in SPI flash), and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) execution contexts like IRQ handlers, tasklets, or workqueues (such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) as keventd).  Your driver can be as fancy, or as simple, as you need.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) Such a transfer() method would normally just add the message to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) queue, and then start some asynchronous transfer engine (unless it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) already running).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) THANKS TO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) ---------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) Contributors to Linux-SPI discussions include (in alphabetical order,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) by last name):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) - Mark Brown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) - David Brownell
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) - Russell King
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) - Grant Likely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) - Dmitry Pervushin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) - Stephen Street
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) - Mark Underwood
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) - Andrew Victor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) - Linus Walleij
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) - Vitaly Wool