Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) Locking lessons
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) Lesson 1: Spin locks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) ====================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) The most basic primitive for locking is spinlock::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)   static DEFINE_SPINLOCK(xxx_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 	spin_lock_irqsave(&xxx_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 	... critical section here ..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 	spin_unlock_irqrestore(&xxx_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) The above is always safe. It will disable interrupts _locally_, but the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) spinlock itself will guarantee the global lock, so it will guarantee that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) there is only one thread-of-control within the region(s) protected by that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) lock. This works well even under UP also, so the code does _not_ need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) worry about UP vs SMP issues: the spinlocks work correctly under both.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)    NOTE! Implications of spin_locks for memory are further described in:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)      Documentation/memory-barriers.txt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)        (5) ACQUIRE operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)        (6) RELEASE operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) The above is usually pretty simple (you usually need and want only one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) spinlock for most things - using more than one spinlock can make things a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) lot more complex and even slower and is usually worth it only for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) sequences that you **know** need to be split up: avoid it at all cost if you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) aren't sure).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) This is really the only really hard part about spinlocks: once you start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) using spinlocks they tend to expand to areas you might not have noticed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) before, because you have to make sure the spinlocks correctly protect the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) shared data structures **everywhere** they are used. The spinlocks are most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) easily added to places that are completely independent of other code (for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) example, internal driver data structures that nobody else ever touches).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)    NOTE! The spin-lock is safe only when you **also** use the lock itself
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)    to do locking across CPU's, which implies that EVERYTHING that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)    touches a shared variable has to agree about the spinlock they want
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)    to use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) ----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) Lesson 2: reader-writer spinlocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) ==================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) If your data accesses have a very natural pattern where you usually tend
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) to mostly read from the shared variables, the reader-writer locks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) (rw_lock) versions of the spinlocks are sometimes useful. They allow multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) readers to be in the same critical region at once, but if somebody wants
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) to change the variables it has to get an exclusive write lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)    NOTE! reader-writer locks require more atomic memory operations than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)    simple spinlocks.  Unless the reader critical section is long, you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)    are better off just using spinlocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) The routines look the same as above::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)    rwlock_t xxx_lock = __RW_LOCK_UNLOCKED(xxx_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	read_lock_irqsave(&xxx_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	.. critical section that only reads the info ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	read_unlock_irqrestore(&xxx_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	write_lock_irqsave(&xxx_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	.. read and write exclusive access to the info ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	write_unlock_irqrestore(&xxx_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) The above kind of lock may be useful for complex data structures like
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) linked lists, especially searching for entries without changing the list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) itself.  The read lock allows many concurrent readers.  Anything that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) **changes** the list will have to get the write lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)    NOTE! RCU is better for list traversal, but requires careful
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)    attention to design detail (see Documentation/RCU/listRCU.rst).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) Also, you cannot "upgrade" a read-lock to a write-lock, so if you at _any_
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) time need to do any changes (even if you don't do it every time), you have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) to get the write-lock at the very beginning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)    NOTE! We are working hard to remove reader-writer spinlocks in most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)    cases, so please don't add a new one without consensus.  (Instead, see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)    Documentation/RCU/rcu.rst for complete information.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) ----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) Lesson 3: spinlocks revisited.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) ==============================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) The single spin-lock primitives above are by no means the only ones. They
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) are the most safe ones, and the ones that work under all circumstances,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) but partly **because** they are safe they are also fairly slow. They are slower
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) than they'd need to be, because they do have to disable interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) (which is just a single instruction on a x86, but it's an expensive one -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) and on other architectures it can be worse).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) If you have a case where you have to protect a data structure across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) several CPU's and you want to use spinlocks you can potentially use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) cheaper versions of the spinlocks. IFF you know that the spinlocks are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) never used in interrupt handlers, you can use the non-irq versions::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	spin_lock(&lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	spin_unlock(&lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) (and the equivalent read-write versions too, of course). The spinlock will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) guarantee the same kind of exclusive access, and it will be much faster.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) This is useful if you know that the data in question is only ever
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) manipulated from a "process context", ie no interrupts involved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) The reasons you mustn't use these versions if you have interrupts that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) play with the spinlock is that you can get deadlocks::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	spin_lock(&lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		<- interrupt comes in:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 			spin_lock(&lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) where an interrupt tries to lock an already locked variable. This is ok if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) the other interrupt happens on another CPU, but it is _not_ ok if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) interrupt happens on the same CPU that already holds the lock, because the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) lock will obviously never be released (because the interrupt is waiting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) for the lock, and the lock-holder is interrupted by the interrupt and will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) not continue until the interrupt has been processed).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) (This is also the reason why the irq-versions of the spinlocks only need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) to disable the _local_ interrupts - it's ok to use spinlocks in interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) on other CPU's, because an interrupt on another CPU doesn't interrupt the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) CPU that holds the lock, so the lock-holder can continue and eventually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) releases the lock).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		Linus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) ----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) Reference information:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) ======================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) For dynamic initialization, use spin_lock_init() or rwlock_init() as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) appropriate::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)    spinlock_t xxx_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)    rwlock_t xxx_rw_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)    static int __init xxx_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)    {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	spin_lock_init(&xxx_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	rwlock_init(&xxx_rw_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)    }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)    module_init(xxx_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) For static initialization, use DEFINE_SPINLOCK() / DEFINE_RWLOCK() or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) __SPIN_LOCK_UNLOCKED() / __RW_LOCK_UNLOCKED() as appropriate.