Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) .. _kernel_hacking_lock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3) ===========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4) Unreliable Guide To Locking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5) ===========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) :Author: Rusty Russell
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) Introduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) ============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) Welcome, to Rusty's Remarkably Unreliable Guide to Kernel Locking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) issues. This document describes the locking systems in the Linux Kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) in 2.6.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) With the wide availability of HyperThreading, and preemption in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) Linux Kernel, everyone hacking on the kernel needs to know the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) fundamentals of concurrency and locking for SMP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) The Problem With Concurrency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) ============================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) (Skip this if you know what a Race Condition is).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) In a normal program, you can increment a counter like so:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)           very_important_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) This is what they would expect to happen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) .. table:: Expected Results
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)   | Instance 1                         | Instance 2                         |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)   +====================================+====================================+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)   | read very_important_count (5)      |                                    |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)   | add 1 (6)                          |                                    |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44)   | write very_important_count (6)     |                                    |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46)   |                                    | read very_important_count (6)      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48)   |                                    | add 1 (7)                          |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50)   |                                    | write very_important_count (7)     |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) This is what might happen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) .. table:: Possible Results
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58)   | Instance 1                         | Instance 2                         |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)   +====================================+====================================+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)   | read very_important_count (5)      |                                    |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62)   |                                    | read very_important_count (5)      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)   | add 1 (6)                          |                                    |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)   |                                    | add 1 (6)                          |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68)   | write very_important_count (6)     |                                    |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70)   |                                    | write very_important_count (6)     |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)   +------------------------------------+------------------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) Race Conditions and Critical Regions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) ------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) This overlap, where the result depends on the relative timing of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) multiple tasks, is called a race condition. The piece of code containing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) the concurrency issue is called a critical region. And especially since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) Linux starting running on SMP machines, they became one of the major
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) issues in kernel design and implementation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) Preemption can have the same effect, even if there is only one CPU: by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) preempting one task during the critical region, we have exactly the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) race condition. In this case the thread which preempts might run the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) critical region itself.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) The solution is to recognize when these simultaneous accesses occur, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) use locks to make sure that only one instance can enter the critical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) region at any time. There are many friendly primitives in the Linux
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) kernel to help you do this. And then there are the unfriendly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) primitives, but I'll pretend they don't exist.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) Locking in the Linux Kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) ===========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) If I could give you one piece of advice: never sleep with anyone crazier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) than yourself. But if I had to give you advice on locking: **keep it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) simple**.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) Be reluctant to introduce new locks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) Strangely enough, this last one is the exact reverse of my advice when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) you **have** slept with someone crazier than yourself. And you should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) think about getting a big dog.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) Two Main Types of Kernel Locks: Spinlocks and Mutexes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) -----------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) There are two main types of kernel locks. The fundamental type is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) spinlock (``include/asm/spinlock.h``), which is a very simple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) single-holder lock: if you can't get the spinlock, you keep trying
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) (spinning) until you can. Spinlocks are very small and fast, and can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) used anywhere.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) The second type is a mutex (``include/linux/mutex.h``): it is like a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) spinlock, but you may block holding a mutex. If you can't lock a mutex,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) your task will suspend itself, and be woken up when the mutex is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) released. This means the CPU can do something else while you are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) waiting. There are many cases when you simply can't sleep (see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) `What Functions Are Safe To Call From Interrupts? <#sleeping-things>`__),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) and so have to use a spinlock instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) Neither type of lock is recursive: see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) `Deadlock: Simple and Advanced <#deadlock>`__.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) Locks and Uniprocessor Kernels
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) ------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) For kernels compiled without ``CONFIG_SMP``, and without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) ``CONFIG_PREEMPT`` spinlocks do not exist at all. This is an excellent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) design decision: when no-one else can run at the same time, there is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) reason to have a lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) If the kernel is compiled without ``CONFIG_SMP``, but ``CONFIG_PREEMPT``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) is set, then spinlocks simply disable preemption, which is sufficient to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) prevent any races. For most purposes, we can think of preemption as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) equivalent to SMP, and not worry about it separately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) You should always test your locking code with ``CONFIG_SMP`` and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) ``CONFIG_PREEMPT`` enabled, even if you don't have an SMP test box,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) because it will still catch some kinds of locking bugs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) Mutexes still exist, because they are required for synchronization
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) between user contexts, as we will see below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) Locking Only In User Context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) ----------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) If you have a data structure which is only ever accessed from user
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) context, then you can use a simple mutex (``include/linux/mutex.h``) to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) protect it. This is the most trivial case: you initialize the mutex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) Then you can call mutex_lock_interruptible() to grab the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) mutex, and mutex_unlock() to release it. There is also a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) mutex_lock(), which should be avoided, because it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) not return if a signal is received.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) Example: ``net/netfilter/nf_sockopt.c`` allows registration of new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) setsockopt() and getsockopt() calls, with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) nf_register_sockopt(). Registration and de-registration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) are only done on module load and unload (and boot time, where there is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) no concurrency), and the list of registrations is only consulted for an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) unknown setsockopt() or getsockopt() system
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) call. The ``nf_sockopt_mutex`` is perfect to protect this, especially
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) since the setsockopt and getsockopt calls may well sleep.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) Locking Between User Context and Softirqs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) -----------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) If a softirq shares data with user context, you have two problems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) Firstly, the current user context can be interrupted by a softirq, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) secondly, the critical region could be entered from another CPU. This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) where spin_lock_bh() (``include/linux/spinlock.h``) is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) used. It disables softirqs on that CPU, then grabs the lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) spin_unlock_bh() does the reverse. (The '_bh' suffix is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) a historical reference to "Bottom Halves", the old name for software
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) interrupts. It should really be called spin_lock_softirq()' in a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) perfect world).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) Note that you can also use spin_lock_irq() or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) spin_lock_irqsave() here, which stop hardware interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) as well: see `Hard IRQ Context <#hard-irq-context>`__.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) This works perfectly for UP as well: the spin lock vanishes, and this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) macro simply becomes local_bh_disable()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) (``include/linux/interrupt.h``), which protects you from the softirq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) being run.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) Locking Between User Context and Tasklets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) -----------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) This is exactly the same as above, because tasklets are actually run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) from a softirq.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) Locking Between User Context and Timers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) ---------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) This, too, is exactly the same as above, because timers are actually run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) from a softirq. From a locking point of view, tasklets and timers are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) identical.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) Locking Between Tasklets/Timers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) -------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) Sometimes a tasklet or timer might want to share data with another
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) tasklet or timer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) The Same Tasklet/Timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) ~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) Since a tasklet is never run on two CPUs at once, you don't need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) worry about your tasklet being reentrant (running twice at once), even
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) on SMP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) Different Tasklets/Timers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) ~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) If another tasklet/timer wants to share data with your tasklet or timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) , you will both need to use spin_lock() and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) spin_unlock() calls. spin_lock_bh() is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) unnecessary here, as you are already in a tasklet, and none will be run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) on the same CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) Locking Between Softirqs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) ------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) Often a softirq might want to share data with itself or a tasklet/timer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) The Same Softirq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) ~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) The same softirq can run on the other CPUs: you can use a per-CPU array
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) (see `Per-CPU Data <#per-cpu-data>`__) for better performance. If you're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) going so far as to use a softirq, you probably care about scalable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) performance enough to justify the extra complexity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) You'll need to use spin_lock() and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) spin_unlock() for shared data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) Different Softirqs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) ~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) You'll need to use spin_lock() and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) spin_unlock() for shared data, whether it be a timer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) tasklet, different softirq or the same or another softirq: any of them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) could be running on a different CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) Hard IRQ Context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) ================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) Hardware interrupts usually communicate with a tasklet or softirq.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) Frequently this involves putting work in a queue, which the softirq will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) take out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) Locking Between Hard IRQ and Softirqs/Tasklets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) ----------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) If a hardware irq handler shares data with a softirq, you have two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) concerns. Firstly, the softirq processing can be interrupted by a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) hardware interrupt, and secondly, the critical region could be entered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) by a hardware interrupt on another CPU. This is where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) spin_lock_irq() is used. It is defined to disable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) interrupts on that cpu, then grab the lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) spin_unlock_irq() does the reverse.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) The irq handler does not need to use spin_lock_irq(), because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) the softirq cannot run while the irq handler is running: it can use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) spin_lock(), which is slightly faster. The only exception
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) would be if a different hardware irq handler uses the same lock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) spin_lock_irq() will stop that from interrupting us.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) This works perfectly for UP as well: the spin lock vanishes, and this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) macro simply becomes local_irq_disable()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) (``include/asm/smp.h``), which protects you from the softirq/tasklet/BH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) being run.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) spin_lock_irqsave() (``include/linux/spinlock.h``) is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) variant which saves whether interrupts were on or off in a flags word,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) which is passed to spin_unlock_irqrestore(). This means
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) that the same code can be used inside an hard irq handler (where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) interrupts are already off) and in softirqs (where the irq disabling is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) required).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) Note that softirqs (and hence tasklets and timers) are run on return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) from hardware interrupts, so spin_lock_irq() also stops
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) these. In that sense, spin_lock_irqsave() is the most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) general and powerful locking function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) Locking Between Two Hard IRQ Handlers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) -------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) It is rare to have to share data between two IRQ handlers, but if you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) do, spin_lock_irqsave() should be used: it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) architecture-specific whether all interrupts are disabled inside irq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) handlers themselves.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) Cheat Sheet For Locking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) =======================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) Pete Zaitcev gives the following summary:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) -  If you are in a process context (any syscall) and want to lock other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303)    process out, use a mutex. You can take a mutex and sleep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304)    (``copy_from_user*(`` or ``kmalloc(x,GFP_KERNEL)``).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) -  Otherwise (== data can be touched in an interrupt), use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307)    spin_lock_irqsave() and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308)    spin_unlock_irqrestore().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) -  Avoid holding spinlock for more than 5 lines of code and across any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311)    function call (except accessors like readb()).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) Table of Minimum Requirements
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) -----------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) The following table lists the **minimum** locking requirements between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) various contexts. In some cases, the same context can only be running on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) one CPU at a time, so no locking is required for that context (eg. a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) particular thread can only run on one CPU at a time, but if it needs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) shares data with another thread, locking is required).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) Remember the advice above: you can always use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) spin_lock_irqsave(), which is a superset of all other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) spinlock primitives.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) ============== ============= ============= ========= ========= ========= ========= ======= ======= ============== ==============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) .              IRQ Handler A IRQ Handler B Softirq A Softirq B Tasklet A Tasklet B Timer A Timer B User Context A User Context B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) ============== ============= ============= ========= ========= ========= ========= ======= ======= ============== ==============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) IRQ Handler A  None
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) IRQ Handler B  SLIS          None
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) Softirq A      SLI           SLI           SL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) Softirq B      SLI           SLI           SL        SL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) Tasklet A      SLI           SLI           SL        SL        None
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) Tasklet B      SLI           SLI           SL        SL        SL        None
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) Timer A        SLI           SLI           SL        SL        SL        SL        None
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) Timer B        SLI           SLI           SL        SL        SL        SL        SL      None
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) User Context A SLI           SLI           SLBH      SLBH      SLBH      SLBH      SLBH    SLBH    None
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) User Context B SLI           SLI           SLBH      SLBH      SLBH      SLBH      SLBH    SLBH    MLI            None
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) ============== ============= ============= ========= ========= ========= ========= ======= ======= ============== ==============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) Table: Table of Locking Requirements
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) +--------+----------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) | SLIS   | spin_lock_irqsave          |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) +--------+----------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) | SLI    | spin_lock_irq              |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) +--------+----------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) | SL     | spin_lock                  |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) +--------+----------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) | SLBH   | spin_lock_bh               |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) +--------+----------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) | MLI    | mutex_lock_interruptible   |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) +--------+----------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) Table: Legend for Locking Requirements Table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) The trylock Functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) =====================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) There are functions that try to acquire a lock only once and immediately
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) return a value telling about success or failure to acquire the lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) They can be used if you need no access to the data protected with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) lock when some other thread is holding the lock. You should acquire the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) lock later if you then need access to the data protected with the lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) spin_trylock() does not spin but returns non-zero if it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) acquires the spinlock on the first try or 0 if not. This function can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) used in all contexts like spin_lock(): you must have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) disabled the contexts that might interrupt you and acquire the spin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) mutex_trylock() does not suspend your task but returns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) non-zero if it could lock the mutex on the first try or 0 if not. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) function cannot be safely used in hardware or software interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) contexts despite not sleeping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) Common Examples
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) Let's step through a simple example: a cache of number to name mappings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) The cache keeps a count of how often each of the objects is used, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) when it gets full, throws out the least used one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) All In User Context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) -------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) For our first example, we assume that all operations are in user context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) (ie. from system calls), so we can sleep. This means we can use a mutex
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) to protect the cache and all the objects within it. Here's the code::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391)     #include <linux/list.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392)     #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393)     #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394)     #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395)     #include <asm/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397)     struct object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398)     {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399)             struct list_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400)             int id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401)             char name[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402)             int popularity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403)     };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405)     /* Protects the cache, cache_num, and the objects within it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406)     static DEFINE_MUTEX(cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407)     static LIST_HEAD(cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408)     static unsigned int cache_num = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409)     #define MAX_CACHE_SIZE 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411)     /* Must be holding cache_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412)     static struct object *__cache_find(int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413)     {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414)             struct object *i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416)             list_for_each_entry(i, &cache, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417)                     if (i->id == id) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418)                             i->popularity++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419)                             return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420)                     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421)             return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422)     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424)     /* Must be holding cache_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425)     static void __cache_delete(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426)     {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427)             BUG_ON(!obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428)             list_del(&obj->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429)             kfree(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430)             cache_num--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431)     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433)     /* Must be holding cache_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434)     static void __cache_add(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435)     {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436)             list_add(&obj->list, &cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437)             if (++cache_num > MAX_CACHE_SIZE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438)                     struct object *i, *outcast = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439)                     list_for_each_entry(i, &cache, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440)                             if (!outcast || i->popularity < outcast->popularity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441)                                     outcast = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442)                     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443)                     __cache_delete(outcast);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444)             }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445)     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447)     int cache_add(int id, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448)     {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449)             struct object *obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451)             if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452)                     return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454)             strscpy(obj->name, name, sizeof(obj->name));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455)             obj->id = id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456)             obj->popularity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458)             mutex_lock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459)             __cache_add(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460)             mutex_unlock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461)             return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462)     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464)     void cache_delete(int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465)     {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466)             mutex_lock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467)             __cache_delete(__cache_find(id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468)             mutex_unlock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469)     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471)     int cache_find(int id, char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472)     {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473)             struct object *obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474)             int ret = -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476)             mutex_lock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477)             obj = __cache_find(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478)             if (obj) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479)                     ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480)                     strcpy(name, obj->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481)             }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482)             mutex_unlock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483)             return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484)     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) Note that we always make sure we have the cache_lock when we add,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) delete, or look up the cache: both the cache infrastructure itself and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) the contents of the objects are protected by the lock. In this case it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) easy, since we copy the data for the user, and never let them access the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) objects directly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) There is a slight (and common) optimization here: in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) cache_add() we set up the fields of the object before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) grabbing the lock. This is safe, as no-one else can access it until we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) put it in cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) Accessing From Interrupt Context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) --------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) Now consider the case where cache_find() can be called
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) from interrupt context: either a hardware interrupt or a softirq. An
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) example would be a timer which deletes object from the cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) The change is shown below, in standard patch format: the ``-`` are lines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) which are taken away, and the ``+`` are lines which are added.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509)     --- cache.c.usercontext 2003-12-09 13:58:54.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510)     +++ cache.c.interrupt   2003-12-09 14:07:49.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511)     @@ -12,7 +12,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512)              int popularity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513)      };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515)     -static DEFINE_MUTEX(cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516)     +static DEFINE_SPINLOCK(cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517)      static LIST_HEAD(cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518)      static unsigned int cache_num = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519)      #define MAX_CACHE_SIZE 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520)     @@ -55,6 +55,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521)      int cache_add(int id, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523)              struct object *obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524)     +        unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526)              if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527)                      return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528)     @@ -63,30 +64,33 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529)              obj->id = id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530)              obj->popularity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532)     -        mutex_lock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533)     +        spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534)              __cache_add(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535)     -        mutex_unlock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536)     +        spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537)              return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540)      void cache_delete(int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542)     -        mutex_lock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543)     +        unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545)     +        spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546)              __cache_delete(__cache_find(id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547)     -        mutex_unlock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548)     +        spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551)      int cache_find(int id, char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553)              struct object *obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554)              int ret = -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555)     +        unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557)     -        mutex_lock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558)     +        spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559)              obj = __cache_find(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560)              if (obj) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561)                      ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562)                      strcpy(name, obj->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563)              }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564)     -        mutex_unlock(&cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565)     +        spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566)              return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) Note that the spin_lock_irqsave() will turn off
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) interrupts if they are on, otherwise does nothing (if we are already in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) an interrupt handler), hence these functions are safe to call from any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) Unfortunately, cache_add() calls kmalloc()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) with the ``GFP_KERNEL`` flag, which is only legal in user context. I
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) have assumed that cache_add() is still only called in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) user context, otherwise this should become a parameter to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) cache_add().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) Exposing Objects Outside This File
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) ----------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) If our objects contained more information, it might not be sufficient to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) copy the information in and out: other parts of the code might want to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) keep pointers to these objects, for example, rather than looking up the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) id every time. This produces two problems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) The first problem is that we use the ``cache_lock`` to protect objects:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) we'd need to make this non-static so the rest of the code can use it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) This makes locking trickier, as it is no longer all in one place.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) The second problem is the lifetime problem: if another structure keeps a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) pointer to an object, it presumably expects that pointer to remain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) valid. Unfortunately, this is only guaranteed while you hold the lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) otherwise someone might call cache_delete() and even
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) worse, add another object, re-using the same address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) As there is only one lock, you can't hold it forever: no-one else would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) get any work done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) The solution to this problem is to use a reference count: everyone who
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) has a pointer to the object increases it when they first get the object,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) and drops the reference count when they're finished with it. Whoever
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) drops it to zero knows it is unused, and can actually delete it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) Here is the code::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608)     --- cache.c.interrupt   2003-12-09 14:25:43.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609)     +++ cache.c.refcnt  2003-12-09 14:33:05.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610)     @@ -7,6 +7,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611)      struct object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613)              struct list_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614)     +        unsigned int refcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615)              int id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616)              char name[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617)              int popularity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618)     @@ -17,6 +18,35 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619)      static unsigned int cache_num = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620)      #define MAX_CACHE_SIZE 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622)     +static void __object_put(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623)     +{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624)     +        if (--obj->refcnt == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625)     +                kfree(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626)     +}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628)     +static void __object_get(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629)     +{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630)     +        obj->refcnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631)     +}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633)     +void object_put(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634)     +{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635)     +        unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637)     +        spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638)     +        __object_put(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639)     +        spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640)     +}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642)     +void object_get(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643)     +{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644)     +        unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646)     +        spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647)     +        __object_get(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648)     +        spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649)     +}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651)      /* Must be holding cache_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652)      static struct object *__cache_find(int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654)     @@ -35,6 +65,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656)              BUG_ON(!obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657)              list_del(&obj->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658)     +        __object_put(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659)              cache_num--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662)     @@ -63,6 +94,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663)              strscpy(obj->name, name, sizeof(obj->name));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664)              obj->id = id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665)              obj->popularity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666)     +        obj->refcnt = 1; /* The cache holds a reference */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668)              spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669)              __cache_add(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670)     @@ -79,18 +111,15 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671)              spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674)     -int cache_find(int id, char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675)     +struct object *cache_find(int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677)              struct object *obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678)     -        int ret = -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679)              unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681)              spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682)              obj = __cache_find(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683)     -        if (obj) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684)     -                ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685)     -                strcpy(name, obj->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686)     -        }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687)     +        if (obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688)     +                __object_get(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689)              spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690)     -        return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691)     +        return obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) We encapsulate the reference counting in the standard 'get' and 'put'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) functions. Now we can return the object itself from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) cache_find() which has the advantage that the user can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) now sleep holding the object (eg. to copy_to_user() to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) name to userspace).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) The other point to note is that I said a reference should be held for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) every pointer to the object: thus the reference count is 1 when first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) inserted into the cache. In some versions the framework does not hold a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) reference count, but they are more complicated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) Using Atomic Operations For The Reference Count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) In practice, :c:type:`atomic_t` would usually be used for refcnt. There are a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) number of atomic operations defined in ``include/asm/atomic.h``: these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) are guaranteed to be seen atomically from all CPUs in the system, so no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) lock is required. In this case, it is simpler than using spinlocks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) although for anything non-trivial using spinlocks is clearer. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) atomic_inc() and atomic_dec_and_test()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) are used instead of the standard increment and decrement operators, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) the lock is no longer used to protect the reference count itself.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719)     --- cache.c.refcnt  2003-12-09 15:00:35.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720)     +++ cache.c.refcnt-atomic   2003-12-11 15:49:42.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721)     @@ -7,7 +7,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722)      struct object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724)              struct list_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725)     -        unsigned int refcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726)     +        atomic_t refcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727)              int id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728)              char name[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729)              int popularity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730)     @@ -18,33 +18,15 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731)      static unsigned int cache_num = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732)      #define MAX_CACHE_SIZE 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734)     -static void __object_put(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735)     -{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736)     -        if (--obj->refcnt == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737)     -                kfree(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738)     -}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739)     -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740)     -static void __object_get(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741)     -{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742)     -        obj->refcnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743)     -}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744)     -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745)      void object_put(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747)     -        unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748)     -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749)     -        spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750)     -        __object_put(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751)     -        spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752)     +        if (atomic_dec_and_test(&obj->refcnt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753)     +                kfree(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756)      void object_get(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758)     -        unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759)     -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760)     -        spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761)     -        __object_get(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762)     -        spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763)     +        atomic_inc(&obj->refcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766)      /* Must be holding cache_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767)     @@ -65,7 +47,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769)              BUG_ON(!obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770)              list_del(&obj->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771)     -        __object_put(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772)     +        object_put(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773)              cache_num--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776)     @@ -94,7 +76,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777)              strscpy(obj->name, name, sizeof(obj->name));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778)              obj->id = id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779)              obj->popularity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780)     -        obj->refcnt = 1; /* The cache holds a reference */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781)     +        atomic_set(&obj->refcnt, 1); /* The cache holds a reference */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783)              spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784)              __cache_add(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785)     @@ -119,7 +101,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786)              spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787)              obj = __cache_find(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788)              if (obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789)     -                __object_get(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790)     +                object_get(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791)              spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792)              return obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) Protecting The Objects Themselves
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) ---------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) In these examples, we assumed that the objects (except the reference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) counts) never changed once they are created. If we wanted to allow the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) name to change, there are three possibilities:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) -  You can make ``cache_lock`` non-static, and tell people to grab that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803)    lock before changing the name in any object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) -  You can provide a cache_obj_rename() which grabs this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806)    lock and changes the name for the caller, and tell everyone to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807)    that function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) -  You can make the ``cache_lock`` protect only the cache itself, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810)    use another lock to protect the name.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) Theoretically, you can make the locks as fine-grained as one lock for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) every field, for every object. In practice, the most common variants
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) are:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) -  One lock which protects the infrastructure (the ``cache`` list in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817)    this example) and all the objects. This is what we have done so far.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) -  One lock which protects the infrastructure (including the list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820)    pointers inside the objects), and one lock inside the object which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821)    protects the rest of that object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) -  Multiple locks to protect the infrastructure (eg. one lock per hash
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824)    chain), possibly with a separate per-object lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) Here is the "lock-per-object" implementation:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830)     --- cache.c.refcnt-atomic   2003-12-11 15:50:54.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831)     +++ cache.c.perobjectlock   2003-12-11 17:15:03.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832)     @@ -6,11 +6,17 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834)      struct object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836)     +        /* These two protected by cache_lock. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837)              struct list_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838)     +        int popularity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840)              atomic_t refcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842)     +        /* Doesn't change once created. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843)              int id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845)     +        spinlock_t lock; /* Protects the name */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846)              char name[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847)     -        int popularity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848)      };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850)      static DEFINE_SPINLOCK(cache_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851)     @@ -77,6 +84,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852)              obj->id = id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853)              obj->popularity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854)              atomic_set(&obj->refcnt, 1); /* The cache holds a reference */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855)     +        spin_lock_init(&obj->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857)              spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858)              __cache_add(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) Note that I decide that the popularity count should be protected by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) ``cache_lock`` rather than the per-object lock: this is because it (like
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) the :c:type:`struct list_head <list_head>` inside the object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) is logically part of the infrastructure. This way, I don't need to grab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) the lock of every object in __cache_add() when seeking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) the least popular.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) I also decided that the id member is unchangeable, so I don't need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) grab each object lock in __cache_find() to examine the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) id: the object lock is only used by a caller who wants to read or write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) the name field.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) Note also that I added a comment describing what data was protected by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) which locks. This is extremely important, as it describes the runtime
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) behavior of the code, and can be hard to gain from just reading. And as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) Alan Cox says, “Lock data, not code”.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) Common Problems
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) Deadlock: Simple and Advanced
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) -----------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) There is a coding bug where a piece of code tries to grab a spinlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) twice: it will spin forever, waiting for the lock to be released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) (spinlocks, rwlocks and mutexes are not recursive in Linux). This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) trivial to diagnose: not a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) stay-up-five-nights-talk-to-fluffy-code-bunnies kind of problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) For a slightly more complex case, imagine you have a region shared by a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) softirq and user context. If you use a spin_lock() call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) to protect it, it is possible that the user context will be interrupted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) by the softirq while it holds the lock, and the softirq will then spin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) forever trying to get the same lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) Both of these are called deadlock, and as shown above, it can occur even
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) with a single CPU (although not on UP compiles, since spinlocks vanish
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) on kernel compiles with ``CONFIG_SMP``\ =n. You'll still get data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) corruption in the second example).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) This complete lockup is easy to diagnose: on SMP boxes the watchdog
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) timer or compiling with ``DEBUG_SPINLOCK`` set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) (``include/linux/spinlock.h``) will show this up immediately when it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) happens.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) A more complex problem is the so-called 'deadly embrace', involving two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) or more locks. Say you have a hash table: each entry in the table is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) spinlock, and a chain of hashed objects. Inside a softirq handler, you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) sometimes want to alter an object from one place in the hash to another:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) you grab the spinlock of the old hash chain and the spinlock of the new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) hash chain, and delete the object from the old one, and insert it in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) new one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) There are two problems here. First, if your code ever tries to move the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) object to the same chain, it will deadlock with itself as it tries to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) lock it twice. Secondly, if the same softirq on another CPU is trying to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) move another object in the reverse direction, the following could
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) happen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) +-----------------------+-----------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) | CPU 1                 | CPU 2                 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) +=======================+=======================+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) | Grab lock A -> OK     | Grab lock B -> OK     |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) +-----------------------+-----------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) | Grab lock B -> spin   | Grab lock A -> spin   |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) +-----------------------+-----------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) Table: Consequences
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) The two CPUs will spin forever, waiting for the other to give up their
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) lock. It will look, smell, and feel like a crash.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) Preventing Deadlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) -------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) Textbooks will tell you that if you always lock in the same order, you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) will never get this kind of deadlock. Practice will tell you that this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) approach doesn't scale: when I create a new lock, I don't understand
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) enough of the kernel to figure out where in the 5000 lock hierarchy it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) will fit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) The best locks are encapsulated: they never get exposed in headers, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) are never held around calls to non-trivial functions outside the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) file. You can read through this code and see that it will never
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) deadlock, because it never tries to grab another lock while it has that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) one. People using your code don't even need to know you are using a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) A classic problem here is when you provide callbacks or hooks: if you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) call these with the lock held, you risk simple deadlock, or a deadly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) embrace (who knows what the callback will do?). Remember, the other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) programmers are out to get you, so don't do this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) Overzealous Prevention Of Deadlocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) Deadlocks are problematic, but not as bad as data corruption. Code which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) grabs a read lock, searches a list, fails to find what it wants, drops
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) the read lock, grabs a write lock and inserts the object has a race
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) condition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) If you don't see why, please stay the fuck away from my code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) Racing Timers: A Kernel Pastime
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) -------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) Timers can produce their own special problems with races. Consider a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) collection of objects (list, hash, etc) where each object has a timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) which is due to destroy it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) If you want to destroy the entire collection (say on module removal),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) you might do the following::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973)             /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974)                HUNGARIAN NOTATION */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975)             spin_lock_bh(&list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977)             while (list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978)                     struct foo *next = list->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979)                     del_timer(&list->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980)                     kfree(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981)                     list = next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982)             }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984)             spin_unlock_bh(&list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) Sooner or later, this will crash on SMP, because a timer can have just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) gone off before the spin_lock_bh(), and it will only get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) the lock after we spin_unlock_bh(), and then try to free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) the element (which has already been freed!).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) This can be avoided by checking the result of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) del_timer(): if it returns 1, the timer has been deleted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) If 0, it means (in this case) that it is currently running, so we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) do::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997)             retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998)                     spin_lock_bh(&list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000)                     while (list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001)                             struct foo *next = list->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002)                             if (!del_timer(&list->timer)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003)                                     /* Give timer a chance to delete this */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004)                                     spin_unlock_bh(&list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005)                                     goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006)                             }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007)                             kfree(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008)                             list = next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009)                     }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011)                     spin_unlock_bh(&list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) Another common problem is deleting timers which restart themselves (by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) calling add_timer() at the end of their timer function).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) Because this is a fairly common case which is prone to races, you should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) use del_timer_sync() (``include/linux/timer.h``) to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) handle this case. It returns the number of times the timer had to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) deleted before we finally stopped it from adding itself back in.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) Locking Speed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) =============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) There are three main things to worry about when considering speed of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) some code which does locking. First is concurrency: how many things are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) going to be waiting while someone else is holding a lock. Second is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) time taken to actually acquire and release an uncontended lock. Third is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) using fewer, or smarter locks. I'm assuming that the lock is used fairly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) often: otherwise, you wouldn't be concerned about efficiency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) Concurrency depends on how long the lock is usually held: you should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) hold the lock for as long as needed, but no longer. In the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) example, we always create the object without the lock held, and then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) grab the lock only when we are ready to insert it in the list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) Acquisition times depend on how much damage the lock operations do to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) the pipeline (pipeline stalls) and how likely it is that this CPU was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) the last one to grab the lock (ie. is the lock cache-hot for this CPU):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) on a machine with more CPUs, this likelihood drops fast. Consider a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 700MHz Intel Pentium III: an instruction takes about 0.7ns, an atomic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) increment takes about 58ns, a lock which is cache-hot on this CPU takes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 160ns, and a cacheline transfer from another CPU takes an additional 170
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) to 360ns. (These figures from Paul McKenney's `Linux Journal RCU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) article <http://www.linuxjournal.com/article.php?sid=6993>`__).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) These two aims conflict: holding a lock for a short time might be done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) by splitting locks into parts (such as in our final per-object-lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) example), but this increases the number of lock acquisitions, and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) results are often slower than having a single lock. This is another
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) reason to advocate locking simplicity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) The third concern is addressed below: there are some methods to reduce
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) the amount of locking which needs to be done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) Read/Write Lock Variants
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) ------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) Both spinlocks and mutexes have read/write variants: ``rwlock_t`` and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) :c:type:`struct rw_semaphore <rw_semaphore>`. These divide
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) users into two classes: the readers and the writers. If you are only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) reading the data, you can get a read lock, but to write to the data you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) need the write lock. Many people can hold a read lock, but a writer must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) be sole holder.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) If your code divides neatly along reader/writer lines (as our cache code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) does), and the lock is held by readers for significant lengths of time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) using these locks can help. They are slightly slower than the normal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) locks though, so in practice ``rwlock_t`` is not usually worthwhile.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) Avoiding Locks: Read Copy Update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) --------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) There is a special method of read/write locking called Read Copy Update.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) Using RCU, the readers can avoid taking a lock altogether: as we expect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) our cache to be read more often than updated (otherwise the cache is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) waste of time), it is a candidate for this optimization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) How do we get rid of read locks? Getting rid of read locks means that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) writers may be changing the list underneath the readers. That is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) actually quite simple: we can read a linked list while an element is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) being added if the writer adds the element very carefully. For example,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) adding ``new`` to a single linked list called ``list``::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084)             new->next = list->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085)             wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086)             list->next = new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) The wmb() is a write memory barrier. It ensures that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) first operation (setting the new element's ``next`` pointer) is complete
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) and will be seen by all CPUs, before the second operation is (putting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) the new element into the list). This is important, since modern
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) compilers and modern CPUs can both reorder instructions unless told
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) otherwise: we want a reader to either not see the new element at all, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) see the new element with the ``next`` pointer correctly pointing at the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) rest of the list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) Fortunately, there is a function to do this for standard
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) :c:type:`struct list_head <list_head>` lists:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) list_add_rcu() (``include/linux/list.h``).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) Removing an element from the list is even simpler: we replace the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) pointer to the old element with a pointer to its successor, and readers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) will either see it, or skip over it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108)             list->next = old->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) There is list_del_rcu() (``include/linux/list.h``) which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) does this (the normal version poisons the old object, which we don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) want).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) The reader must also be careful: some CPUs can look through the ``next``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) pointer to start reading the contents of the next element early, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) don't realize that the pre-fetched contents is wrong when the ``next``
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) pointer changes underneath them. Once again, there is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) list_for_each_entry_rcu() (``include/linux/list.h``)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) to help you. Of course, writers can just use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) list_for_each_entry(), since there cannot be two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) simultaneous writers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) Our final dilemma is this: when can we actually destroy the removed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) element? Remember, a reader might be stepping through this element in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) the list right now: if we free this element and the ``next`` pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) changes, the reader will jump off into garbage and crash. We need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) wait until we know that all the readers who were traversing the list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) when we deleted the element are finished. We use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) call_rcu() to register a callback which will actually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) destroy the object once all pre-existing readers are finished.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) Alternatively, synchronize_rcu() may be used to block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) until all pre-existing are finished.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) But how does Read Copy Update know when the readers are finished? The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) method is this: firstly, the readers always traverse the list inside
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) rcu_read_lock()/rcu_read_unlock() pairs:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) these simply disable preemption so the reader won't go to sleep while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) reading the list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) RCU then waits until every other CPU has slept at least once: since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) readers cannot sleep, we know that any readers which were traversing the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) list during the deletion are finished, and the callback is triggered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) The real Read Copy Update code is a little more optimized than this, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) this is the fundamental idea.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149)     --- cache.c.perobjectlock   2003-12-11 17:15:03.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150)     +++ cache.c.rcupdate    2003-12-11 17:55:14.000000000 +1100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151)     @@ -1,15 +1,18 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152)      #include <linux/list.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)      #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154)      #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155)     +#include <linux/rcupdate.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)      #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157)      #include <asm/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159)      struct object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161)     -        /* These two protected by cache_lock. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162)     +        /* This is protected by RCU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163)              struct list_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164)              int popularity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166)     +        struct rcu_head rcu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168)              atomic_t refcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170)              /* Doesn't change once created. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171)     @@ -40,7 +43,7 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173)              struct object *i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175)     -        list_for_each_entry(i, &cache, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176)     +        list_for_each_entry_rcu(i, &cache, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177)                      if (i->id == id) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178)                              i->popularity++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179)                              return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180)     @@ -49,19 +52,25 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181)              return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184)     +/* Final discard done once we know no readers are looking. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185)     +static void cache_delete_rcu(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)     +{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187)     +        object_put(arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188)     +}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189)     +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190)      /* Must be holding cache_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191)      static void __cache_delete(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193)              BUG_ON(!obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194)     -        list_del(&obj->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195)     -        object_put(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196)     +        list_del_rcu(&obj->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197)              cache_num--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198)     +        call_rcu(&obj->rcu, cache_delete_rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201)      /* Must be holding cache_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202)      static void __cache_add(struct object *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204)     -        list_add(&obj->list, &cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205)     +        list_add_rcu(&obj->list, &cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206)              if (++cache_num > MAX_CACHE_SIZE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207)                      struct object *i, *outcast = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208)                      list_for_each_entry(i, &cache, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209)     @@ -104,12 +114,11 @@
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210)      struct object *cache_find(int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211)      {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212)              struct object *obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213)     -        unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215)     -        spin_lock_irqsave(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216)     +        rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217)              obj = __cache_find(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218)              if (obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219)                      object_get(obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220)     -        spin_unlock_irqrestore(&cache_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221)     +        rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222)              return obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223)      }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) Note that the reader will alter the popularity member in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) __cache_find(), and now it doesn't hold a lock. One
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) solution would be to make it an ``atomic_t``, but for this usage, we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) don't really care about races: an approximate result is good enough, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) I didn't change it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) The result is that cache_find() requires no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) synchronization with any other functions, so is almost as fast on SMP as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) it would be on UP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) There is a further optimization possible here: remember our original
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) cache code, where there were no reference counts and the caller simply
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) held the lock whenever using the object? This is still possible: if you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) hold the lock, no one can delete the object, so you don't need to get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) and put the reference count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) Now, because the 'read lock' in RCU is simply disabling preemption, a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) caller which always has preemption disabled between calling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) cache_find() and object_put() does not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) need to actually get and put the reference count: we could expose
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) __cache_find() by making it non-static, and such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) callers could simply call that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) The benefit here is that the reference count is not written to: the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) object is not altered in any way, which is much faster on SMP machines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) due to caching.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) Per-CPU Data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) ------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) Another technique for avoiding locking which is used fairly widely is to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) duplicate information for each CPU. For example, if you wanted to keep a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) count of a common condition, you could use a spin lock and a single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) counter. Nice and simple.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) If that was too slow (it's usually not, but if you've got a really big
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) machine to test on and can show that it is), you could instead use a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) counter for each CPU, then none of them need an exclusive lock. See
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) DEFINE_PER_CPU(), get_cpu_var() and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) put_cpu_var() (``include/linux/percpu.h``).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) Of particular use for simple per-cpu counters is the ``local_t`` type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) and the cpu_local_inc() and related functions, which are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) more efficient than simple code on some architectures
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) (``include/asm/local.h``).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) Note that there is no simple, reliable way of getting an exact value of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) such a counter, without introducing more locks. This is not a problem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) for some uses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) Data Which Mostly Used By An IRQ Handler
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) ----------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) If data is always accessed from within the same IRQ handler, you don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) need a lock at all: the kernel already guarantees that the irq handler
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) will not run simultaneously on multiple CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) Manfred Spraul points out that you can still do this, even if the data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) is very occasionally accessed in user context or softirqs/tasklets. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) irq handler doesn't use a lock, and all other accesses are done as so::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286)         spin_lock(&lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287)         disable_irq(irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288)         ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289)         enable_irq(irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290)         spin_unlock(&lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) The disable_irq() prevents the irq handler from running
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) (and waits for it to finish if it's currently running on other CPUs).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) The spinlock prevents any other accesses happening at the same time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) Naturally, this is slower than just a spin_lock_irq()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) call, so it only makes sense if this type of access happens extremely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) rarely.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) What Functions Are Safe To Call From Interrupts?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) ================================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) Many functions in the kernel sleep (ie. call schedule()) directly or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) indirectly: you can never call them while holding a spinlock, or with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) preemption disabled. This also means you need to be in user context:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) calling them from an interrupt is illegal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) Some Functions Which Sleep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) --------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) The most common ones are listed below, but you usually have to read the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) code to find out if other calls are safe. If everyone else who calls it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) can sleep, you probably need to be able to sleep, too. In particular,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) registration and deregistration functions usually expect to be called
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) from user context, and can sleep.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) -  Accesses to userspace:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318)    -  copy_from_user()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320)    -  copy_to_user()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322)    -  get_user()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324)    -  put_user()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) -  kmalloc(GP_KERNEL) <kmalloc>`
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) -  mutex_lock_interruptible() and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329)    mutex_lock()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331)    There is a mutex_trylock() which does not sleep.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332)    Still, it must not be used inside interrupt context since its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333)    implementation is not safe for that. mutex_unlock()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334)    will also never sleep. It cannot be used in interrupt context either
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335)    since a mutex must be released by the same task that acquired it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) Some Functions Which Don't Sleep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) --------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) Some functions are safe to call from any context, or holding almost any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) -  printk()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) -  kfree()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) -  add_timer() and del_timer()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) Mutex API reference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) ===================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) .. kernel-doc:: include/linux/mutex.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353)    :internal:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) .. kernel-doc:: kernel/locking/mutex.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356)    :export:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) Futex API reference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) ===================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) .. kernel-doc:: kernel/futex.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362)    :internal:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) Further reading
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) -  ``Documentation/locking/spinlocks.rst``: Linus Torvalds' spinlocking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368)    tutorial in the kernel sources.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) -  Unix Systems for Modern Architectures: Symmetric Multiprocessing and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371)    Caching for Kernel Programmers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373)    Curt Schimmel's very good introduction to kernel level locking (not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374)    written for Linux, but nearly everything applies). The book is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375)    expensive, but really worth every penny to understand SMP locking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376)    [ISBN: 0201633388]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) Thanks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) ======
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) Thanks to Telsa Gwynne for DocBooking, neatening and adding style.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul Mackerras,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) Ruedi Aschwanden, Alan Cox, Manfred Spraul, Tim Waugh, Pete Zaitcev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) James Morris, Robert Love, Paul McKenney, John Ashby for proofreading,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) correcting, flaming, commenting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) Thanks to the cabal for having no influence on this document.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) Glossary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) ========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) preemption
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394)   Prior to 2.5, or when ``CONFIG_PREEMPT`` is unset, processes in user
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395)   context inside the kernel would not preempt each other (ie. you had that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396)   CPU until you gave it up, except for interrupts). With the addition of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397)   ``CONFIG_PREEMPT`` in 2.5.4, this changed: when in user context, higher
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398)   priority tasks can "cut in": spinlocks were changed to disable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399)   preemption, even on UP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) bh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402)   Bottom Half: for historical reasons, functions with '_bh' in them often
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403)   now refer to any software interrupt, e.g. spin_lock_bh()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404)   blocks any software interrupt on the current CPU. Bottom halves are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405)   deprecated, and will eventually be replaced by tasklets. Only one bottom
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406)   half will be running at any time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) Hardware Interrupt / Hardware IRQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409)   Hardware interrupt request. in_irq() returns true in a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410)   hardware interrupt handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) Interrupt Context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413)   Not user context: processing a hardware irq or software irq. Indicated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414)   by the in_interrupt() macro returning true.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417)   Symmetric Multi-Processor: kernels compiled for multiple-CPU machines.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418)   (``CONFIG_SMP=y``).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) Software Interrupt / softirq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421)   Software interrupt handler. in_irq() returns false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422)   in_softirq() returns true. Tasklets and softirqs both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423)   fall into the category of 'software interrupts'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425)   Strictly speaking a softirq is one of up to 32 enumerated software
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426)   interrupts which can run on multiple CPUs at once. Sometimes used to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427)   refer to tasklets as well (ie. all software interrupts).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) tasklet
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430)   A dynamically-registrable software interrupt, which is guaranteed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431)   only run on one CPU at a time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434)   A dynamically-registrable software interrupt, which is run at (or close
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435)   to) a given time. When running, it is just like a tasklet (in fact, they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436)   are called from the ``TIMER_SOFTIRQ``).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) UP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439)   Uni-Processor: Non-SMP. (``CONFIG_SMP=n``).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) User Context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442)   The kernel executing on behalf of a particular process (ie. a system
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443)   call or trap) or kernel thread. You can tell which process with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444)   ``current`` macro.) Not to be confused with userspace. Can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445)   interrupted by software or hardware interrupts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) Userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448)   A process executing its own code outside the kernel.