Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) .. SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) NVMEM Subsystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) This document explains the NVMEM Framework along with the APIs provided,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) and how to use it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 1. Introduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) *NVMEM* is the abbreviation for Non Volatile Memory layer. It is used to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) retrieve configuration of SOC or Device specific data from non volatile
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) memories like eeprom, efuses and so on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) Before this framework existed, NVMEM drivers like eeprom were stored in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) drivers/misc, where they all had to duplicate pretty much the same code to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) register a sysfs file, allow in-kernel users to access the content of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) devices they were driving, etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) This was also a problem as far as other in-kernel users were involved, since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) the solutions used were pretty much different from one driver to another, there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) was a rather big abstraction leak.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) This framework aims at solve these problems. It also introduces DT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) representation for consumer devices to go get the data they require (MAC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) Addresses, SoC/Revision ID, part numbers, and so on) from the NVMEMs. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) framework is based on regmap, so that most of the abstraction available in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) regmap can be reused, across multiple types of buses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) NVMEM Providers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) +++++++++++++++
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) NVMEM provider refers to an entity that implements methods to initialize, read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) and write the non-volatile memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 2. Registering/Unregistering the NVMEM provider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) ===============================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) A NVMEM provider can register with NVMEM core by supplying relevant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) nvmem configuration to nvmem_register(), on success core would return a valid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) nvmem_device pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) nvmem_unregister(nvmem) is used to unregister a previously registered provider.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) For example, a simple qfprom case::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)   static struct nvmem_config econfig = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	.name = "qfprom",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	.owner = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)   };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)   static int qfprom_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)   {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	econfig.dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	nvmem = nvmem_register(&econfig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)   }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) It is mandatory that the NVMEM provider has a regmap associated with its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) struct device. Failure to do would return error code from nvmem_register().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) Users of board files can define and register nvmem cells using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) nvmem_cell_table struct::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)   static struct nvmem_cell_info foo_nvmem_cells[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 		.name		= "macaddr",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 		.offset		= 0x7f00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 		.bytes		= ETH_ALEN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)   };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)   static struct nvmem_cell_table foo_nvmem_cell_table = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	.nvmem_name		= "i2c-eeprom",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	.cells			= foo_nvmem_cells,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	.ncells			= ARRAY_SIZE(foo_nvmem_cells),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)   };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)   nvmem_add_cell_table(&foo_nvmem_cell_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) Additionally it is possible to create nvmem cell lookup entries and register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) them with the nvmem framework from machine code as shown in the example below::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)   static struct nvmem_cell_lookup foo_nvmem_lookup = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	.nvmem_name		= "i2c-eeprom",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	.cell_name		= "macaddr",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	.dev_id			= "foo_mac.0",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	.con_id			= "mac-address",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)   };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)   nvmem_add_cell_lookups(&foo_nvmem_lookup, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) NVMEM Consumers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) +++++++++++++++
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) NVMEM consumers are the entities which make use of the NVMEM provider to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) read from and to NVMEM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 3. NVMEM cell based consumer APIs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) =================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) NVMEM cells are the data entries/fields in the NVMEM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) The NVMEM framework provides 3 APIs to read/write NVMEM cells::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)   struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)   struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)   void nvmem_cell_put(struct nvmem_cell *cell);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)   void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)   void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)   int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) `*nvmem_cell_get()` apis will get a reference to nvmem cell for a given id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) and nvmem_cell_read/write() can then read or write to the cell.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) Once the usage of the cell is finished the consumer should call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) `*nvmem_cell_put()` to free all the allocation memory for the cell.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 4. Direct NVMEM device based consumer APIs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) ==========================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) In some instances it is necessary to directly read/write the NVMEM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) To facilitate such consumers NVMEM framework provides below apis::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)   struct nvmem_device *nvmem_device_get(struct device *dev, const char *name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)   struct nvmem_device *devm_nvmem_device_get(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 					   const char *name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)   struct nvmem_device *nvmem_device_find(void *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 			int (*match)(struct device *dev, const void *data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)   void nvmem_device_put(struct nvmem_device *nvmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)   int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		      size_t bytes, void *buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)   int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		       size_t bytes, void *buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)   int nvmem_device_cell_read(struct nvmem_device *nvmem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 			   struct nvmem_cell_info *info, void *buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)   int nvmem_device_cell_write(struct nvmem_device *nvmem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 			    struct nvmem_cell_info *info, void *buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) Before the consumers can read/write NVMEM directly, it should get hold
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) of nvmem_controller from one of the `*nvmem_device_get()` api.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) The difference between these apis and cell based apis is that these apis always
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) take nvmem_device as parameter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 5. Releasing a reference to the NVMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) =====================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) When a consumer no longer needs the NVMEM, it has to release the reference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) to the NVMEM it has obtained using the APIs mentioned in the above section.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) The NVMEM framework provides 2 APIs to release a reference to the NVMEM::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)   void nvmem_cell_put(struct nvmem_cell *cell);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)   void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)   void nvmem_device_put(struct nvmem_device *nvmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)   void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) Both these APIs are used to release a reference to the NVMEM and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) devm_nvmem_cell_put and devm_nvmem_device_put destroys the devres associated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) with this NVMEM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) Userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) +++++++++
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 6. Userspace binary interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) ==============================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) Userspace can read/write the raw NVMEM file located at::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	/sys/bus/nvmem/devices/*/nvmem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) ex::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)   hexdump /sys/bus/nvmem/devices/qfprom0/nvmem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)   0000000 0000 0000 0000 0000 0000 0000 0000 0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)   *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)   00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)   0000000 0000 0000 0000 0000 0000 0000 0000 0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)   ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)   *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)   0001000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 7. DeviceTree Binding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) =====================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) See Documentation/devicetree/bindings/nvmem/nvmem.txt