^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) ==========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) NAND Error-correction Code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) ==========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) Introduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) ============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) Having looked at the linux mtd/nand driver and more specific at nand_ecc.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) I felt there was room for optimisation. I bashed the code for a few hours
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) performing tricks like table lookup removing superfluous code etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) After that the speed was increased by 35-40%.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) Still I was not too happy as I felt there was additional room for improvement.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) Bad! I was hooked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) I decided to annotate my steps in this file. Perhaps it is useful to someone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) or someone learns something from it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) The problem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) ===========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) NAND flash (at least SLC one) typically has sectors of 256 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) However NAND flash is not extremely reliable so some error detection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) (and sometimes correction) is needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) This is done by means of a Hamming code. I'll try to explain it in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) laymans terms (and apologies to all the pro's in the field in case I do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) not use the right terminology, my coding theory class was almost 30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) years ago, and I must admit it was not one of my favourites).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) As I said before the ecc calculation is performed on sectors of 256
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) bytes. This is done by calculating several parity bits over the rows and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) columns. The parity used is even parity which means that the parity bit = 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) if the data over which the parity is calculated is 1 and the parity bit = 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) if the data over which the parity is calculated is 0. So the total
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) number of bits over the data over which the parity is calculated + the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) parity bit is even. (see wikipedia if you can't follow this).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) Parity is often calculated by means of an exclusive or operation,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) sometimes also referred to as xor. In C the operator for xor is ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) Back to ecc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) Let's give a small figure:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) ========= ==== ==== ==== ==== ==== ==== ==== ==== === === === === ====
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) ========= ==== ==== ==== ==== ==== ==== ==== ==== === === === === ====
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) This figure represents a sector of 256 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) cp is my abbreviation for column parity, rp for row parity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) Let's start to explain column parity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) - cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) - cp2 is the parity over bit0, bit1, bit4 and bit5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) - cp3 is the parity over bit2, bit3, bit6 and bit7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) - cp4 is the parity over bit0, bit1, bit2 and bit3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) - cp5 is the parity over bit4, bit5, bit6 and bit7.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) Note that each of cp0 .. cp5 is exactly one bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) Row parity actually works almost the same.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) - rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) - rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) - rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) (so handle two bytes, then skip 2 bytes).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) - rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) - for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) - and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) The story now becomes quite boring. I guess you get the idea.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) - rp6 covers 8 bytes then skips 8 etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) - rp7 skips 8 bytes then covers 8 etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) - rp8 covers 16 bytes then skips 16 etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) - rp9 skips 16 bytes then covers 16 etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) - rp10 covers 32 bytes then skips 32 etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) - rp11 skips 32 bytes then covers 32 etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) - rp12 covers 64 bytes then skips 64 etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) - rp13 skips 64 bytes then covers 64 etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) - rp14 covers 128 bytes then skips 128
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) - rp15 skips 128 bytes then covers 128
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) In the end the parity bits are grouped together in three bytes as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) follows:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) ===== ===== ===== ===== ===== ===== ===== ===== =====
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) ===== ===== ===== ===== ===== ===== ===== ===== =====
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) ===== ===== ===== ===== ===== ===== ===== ===== =====
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) I detected after writing this that ST application note AN1823
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) (http://www.st.com/stonline/) gives a much
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) nicer picture.(but they use line parity as term where I use row parity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) Oh well, I'm graphically challenged, so suffer with me for a moment :-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) And I could not reuse the ST picture anyway for copyright reasons.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) Attempt 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) Implementing the parity calculation is pretty simple.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) In C pseudocode::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) for (i = 0; i < 256; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) if (i & 0x01)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) if (i & 0x02)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) if (i & 0x04)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) if (i & 0x08)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) if (i & 0x10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) if (i & 0x20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) if (i & 0x40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) if (i & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) Analysis 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) C does have bitwise operators but not really operators to do the above
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) efficiently (and most hardware has no such instructions either).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) Therefore without implementing this it was clear that the code above was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) not going to bring me a Nobel prize :-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) Fortunately the exclusive or operation is commutative, so we can combine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) the values in any order. So instead of calculating all the bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) individually, let us try to rearrange things.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) For the column parity this is easy. We can just xor the bytes and in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) end filter out the relevant bits. This is pretty nice as it will bring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) all cp calculation out of the for loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) Similarly we can first xor the bytes for the various rows.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) This leads to:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) Attempt 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) const char parity[256] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) void ecc1(const unsigned char *buf, unsigned char *code)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) const unsigned char *bp = buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) unsigned char cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) unsigned char par;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) par = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) for (i = 0; i < 256; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) cur = *bp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) par ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) code[0] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) (parity[rp7] << 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) (parity[rp6] << 6) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) (parity[rp5] << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) (parity[rp4] << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) (parity[rp3] << 3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) (parity[rp2] << 2) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) (parity[rp1] << 1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) (parity[rp0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) code[1] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) (parity[rp15] << 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) (parity[rp14] << 6) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) (parity[rp13] << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) (parity[rp12] << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) (parity[rp11] << 3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) (parity[rp10] << 2) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) (parity[rp9] << 1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) (parity[rp8]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) code[2] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) (parity[par & 0xf0] << 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) (parity[par & 0x0f] << 6) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) (parity[par & 0xcc] << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) (parity[par & 0x33] << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) (parity[par & 0xaa] << 3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) (parity[par & 0x55] << 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) code[0] = ~code[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) code[1] = ~code[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) code[2] = ~code[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) Still pretty straightforward. The last three invert statements are there to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) all data is 0xff, so the checksum then matches.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) I also introduced the parity lookup. I expected this to be the fastest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) way to calculate the parity, but I will investigate alternatives later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) Analysis 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) The code works, but is not terribly efficient. On my system it took
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) almost 4 times as much time as the linux driver code. But hey, if it was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) *that* easy this would have been done long before.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) No pain. no gain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) Fortunately there is plenty of room for improvement.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) In step 1 we moved from bit-wise calculation to byte-wise calculation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) However in C we can also use the unsigned long data type and virtually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) every modern microprocessor supports 32 bit operations, so why not try
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) to write our code in such a way that we process data in 32 bit chunks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) Of course this means some modification as the row parity is byte by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) byte. A quick analysis:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) for the column parity we use the par variable. When extending to 32 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) we can in the end easily calculate rp0 and rp1 from it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) (because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) respectively, from MSB to LSB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) also rp2 and rp3 can be easily retrieved from par as rp3 covers the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) first two MSBs and rp2 covers the last two LSBs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) Note that of course now the loop is executed only 64 times (256/4).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) And note that care must taken wrt byte ordering. The way bytes are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) ordered in a long is machine dependent, and might affect us.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) Anyway, if there is an issue: this code is developed on x86 (to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) precise: a DELL PC with a D920 Intel CPU)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) And of course the performance might depend on alignment, but I expect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) that the I/O buffers in the nand driver are aligned properly (and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) otherwise that should be fixed to get maximum performance).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) Let's give it a try...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) Attempt 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) extern const char parity[256];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) void ecc2(const unsigned char *buf, unsigned char *code)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) const unsigned long *bp = (unsigned long *)buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) unsigned long cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) unsigned long par;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) par = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) for (i = 0; i < 64; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) cur = *bp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) par ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) we need to adapt the code generation for the fact that rp vars are now
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) long; also the column parity calculation needs to be changed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) we'll bring rp4 to 15 back to single byte entities by shifting and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) xoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) par ^= (par >> 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) rp1 = (par >> 8); rp1 &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) rp0 = (par & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) par ^= (par >> 8); par &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) code[0] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) (parity[rp7] << 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) (parity[rp6] << 6) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) (parity[rp5] << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) (parity[rp4] << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) (parity[rp3] << 3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) (parity[rp2] << 2) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) (parity[rp1] << 1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) (parity[rp0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) code[1] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) (parity[rp15] << 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) (parity[rp14] << 6) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) (parity[rp13] << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) (parity[rp12] << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) (parity[rp11] << 3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) (parity[rp10] << 2) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) (parity[rp9] << 1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) (parity[rp8]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) code[2] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) (parity[par & 0xf0] << 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) (parity[par & 0x0f] << 6) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) (parity[par & 0xcc] << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) (parity[par & 0x33] << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) (parity[par & 0xaa] << 3) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) (parity[par & 0x55] << 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) code[0] = ~code[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) code[1] = ~code[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) code[2] = ~code[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) The parity array is not shown any more. Note also that for these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) examples I kinda deviated from my regular programming style by allowing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) multiple statements on a line, not using { } in then and else blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) with only a single statement and by using operators like ^=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) Analysis 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) The code (of course) works, and hurray: we are a little bit faster than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) the linux driver code (about 15%). But wait, don't cheer too quickly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) There is more to be gained.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) If we look at e.g. rp14 and rp15 we see that we either xor our data with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) rp14 or with rp15. However we also have par which goes over all data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) This means there is no need to calculate rp14 as it can be calculated from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) rp15 through rp14 = par ^ rp15, because par = rp14 ^ rp15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) (or if desired we can avoid calculating rp15 and calculate it from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) rp14). That is why some places refer to inverse parity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) Effectively this means we can eliminate the else clause from the if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) statements. Also we can optimise the calculation in the end a little bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) by going from long to byte first. Actually we can even avoid the table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) lookups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) Attempt 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) Odd replaced::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) with::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) if (i & 0x01) rp5 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) if (i & 0x02) rp7 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) if (i & 0x04) rp9 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) if (i & 0x08) rp11 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) if (i & 0x10) rp13 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) if (i & 0x20) rp15 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) and outside the loop added::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) rp4 = par ^ rp5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) rp6 = par ^ rp7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) rp8 = par ^ rp9;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) rp10 = par ^ rp11;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) rp12 = par ^ rp13;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) rp14 = par ^ rp15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) And after that the code takes about 30% more time, although the number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) statements is reduced. This is also reflected in the assembly code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) Analysis 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) Very weird. Guess it has to do with caching or instruction parallellism
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) observation was that this one is only 30% slower (according to time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) executing the code as my 3Ghz D920 processor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) Well, it was expected not to be easy so maybe instead move to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) different track: let's move back to the code from attempt2 and do some
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) loop unrolling. This will eliminate a few if statements. I'll try
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) different amounts of unrolling to see what works best.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) Attempt 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) Unrolled the loop 1, 2, 3 and 4 times.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) For 4 the code starts with::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) for (i = 0; i < 4; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) cur = *bp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) par ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) rp8 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) rp10 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) cur = *bp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) par ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) rp5 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) Analysis 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) Unrolling once gains about 15%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) Unrolling twice keeps the gain at about 15%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) Unrolling three times gives a gain of 30% compared to attempt 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) Unrolling four times gives a marginal improvement compared to unrolling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) three times.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) I decided to proceed with a four time unrolled loop anyway. It was my gut
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) feeling that in the next steps I would obtain additional gain from it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) The next step was triggered by the fact that par contains the xor of all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) bytes and rp4 and rp5 each contain the xor of half of the bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) So in effect par = rp4 ^ rp5. But as xor is commutative we can also say
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) eliminate rp5 (or rp4, but I already foresaw another optimisation).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) Attempt 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) Effectively so all odd digit rp assignments in the loop were removed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) This included the else clause of the if statements.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) Of course after the loop we need to correct things by adding code like::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) rp5 = par ^ rp4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) Also the initial assignments (rp5 = 0; etc) could be removed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) Along the line I also removed the initialisation of rp0/1/2/3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) Analysis 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) Measurements showed this was a good move. The run-time roughly halved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) compared with attempt 4 with 4 times unrolled, and we only require 1/3rd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) of the processor time compared to the current code in the linux kernel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) However, still I thought there was more. I didn't like all the if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) statements. Why not keep a running parity and only keep the last if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) statement. Time for yet another version!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) Attempt 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) THe code within the for loop was changed to::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) for (i = 0; i < 4; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) cur = *bp++; tmppar = cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) cur = *bp++; tmppar ^= cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) cur = *bp++; tmppar ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) cur = *bp++; tmppar ^= cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) cur = *bp++; tmppar ^= cur; rp8 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) cur = *bp++; tmppar ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) cur = *bp++; tmppar ^= cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) cur = *bp++; tmppar ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) par ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) if ((i & 0x1) == 0) rp12 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) if ((i & 0x2) == 0) rp14 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) As you can see tmppar is used to accumulate the parity within a for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) iteration. In the last 3 statements is added to par and, if needed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) to rp12 and rp14.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) While making the changes I also found that I could exploit that tmppar
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) contains the running parity for this iteration. So instead of having:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) rp4 ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) I removed the rp6 ^= cur; statement and did rp6 ^= tmppar; on next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) statement. A similar change was done for rp8 and rp10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) Analysis 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) Measuring this code again showed big gain. When executing the original
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) linux code 1 million times, this took about 1 second on my system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) (using time to measure the performance). After this iteration I was back
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) to 0.075 sec. Actually I had to decide to start measuring over 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) million iterations in order not to lose too much accuracy. This one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) definitely seemed to be the jackpot!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) There is a little bit more room for improvement though. There are three
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) places with statements::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) rp4 ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) It seems more efficient to also maintain a variable rp4_6 in the while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) loop; This eliminates 3 statements per loop. Of course after the loop we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) need to correct by adding::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) rp4 ^= rp4_6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) rp6 ^= rp4_6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) Furthermore there are 4 sequential assignments to rp8. This can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) encoded slightly more efficiently by saving tmppar before those 4 lines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) and later do rp8 = rp8 ^ tmppar ^ notrp8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) (where notrp8 is the value of rp8 before those 4 lines).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) Again a use of the commutative property of xor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) Time for a new test!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) Attempt 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) The new code now looks like::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) for (i = 0; i < 4; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) cur = *bp++; tmppar = cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) cur = *bp++; tmppar ^= cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) cur = *bp++; tmppar ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) cur = *bp++; tmppar ^= cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) notrp8 = tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) cur = *bp++; tmppar ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) cur = *bp++; tmppar ^= cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) cur = *bp++; tmppar ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) rp8 = rp8 ^ tmppar ^ notrp8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) cur = *bp++; tmppar ^= cur; rp6 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) cur = *bp++; tmppar ^= cur; rp4 ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) cur = *bp++; tmppar ^= cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) par ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) if ((i & 0x1) == 0) rp12 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) if ((i & 0x2) == 0) rp14 ^= tmppar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) rp4 ^= rp4_6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) rp6 ^= rp4_6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) Not a big change, but every penny counts :-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) Analysis 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) Actually this made things worse. Not very much, but I don't want to move
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) into the wrong direction. Maybe something to investigate later. Could
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) have to do with caching again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) Guess that is what there is to win within the loop. Maybe unrolling one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) more time will help. I'll keep the optimisations from 7 for now.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) Attempt 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) Unrolled the loop one more time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) Analysis 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) This makes things worse. Let's stick with attempt 6 and continue from there.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) Although it seems that the code within the loop cannot be optimised
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) further there is still room to optimize the generation of the ecc codes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) We can simply calculate the total parity. If this is 0 then rp4 = rp5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) etc. If the parity is 1, then rp4 = !rp5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) in the result byte and then do something like::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) code[0] |= (code[0] << 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) Lets test this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) Attempt 9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) Changed the code but again this slightly degrades performance. Tried all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) kind of other things, like having dedicated parity arrays to avoid the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) shift after parity[rp7] << 7; No gain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) Change the lookup using the parity array by using shift operators (e.g.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) replace parity[rp7] << 7 with::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) rp7 ^= (rp7 << 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) rp7 ^= (rp7 << 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) rp7 ^= (rp7 << 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) rp7 &= 0x80;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) No gain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) The only marginal change was inverting the parity bits, so we can remove
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) the last three invert statements.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) Ah well, pity this does not deliver more. Then again 10 million
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) iterations using the linux driver code takes between 13 and 13.5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) seconds, whereas my code now takes about 0.73 seconds for those 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) million iterations. So basically I've improved the performance by a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) factor 18 on my system. Not that bad. Of course on different hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) you will get different results. No warranties!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) But of course there is no such thing as a free lunch. The codesize almost
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) tripled (from 562 bytes to 1434 bytes). Then again, it is not that much.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) Correcting errors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) =================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) For correcting errors I again used the ST application note as a starter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) but I also peeked at the existing code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) The algorithm itself is pretty straightforward. Just xor the given and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) are 1 we have one correctable bit error. If there is 1 bit 1, we have an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) error in the given ecc code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) It proved to be fastest to do some table lookups. Performance gain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) introduced by this is about a factor 2 on my system when a repair had to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) be done, and 1% or so if no repair had to be done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) Code size increased from 330 bytes to 686 bytes for this function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) (gcc 4.2, -O3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) Conclusion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) ==========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) The gain when calculating the ecc is tremendous. Om my development hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) embedded system with a MIPS core a factor 7 was obtained.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 5 (big endian mode, gcc 4.1.2, -O3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) For correction not much gain could be obtained (as bitflips are rare). Then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) again there are also much less cycles spent there.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) It seems there is not much more gain possible in this, at least when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) programmed in C. Of course it might be possible to squeeze something more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) out of it with an assembler program, but due to pipeline behaviour etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) this is very tricky (at least for intel hw).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) Author: Frans Meulenbroeks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) Copyright (C) 2008 Koninklijke Philips Electronics NV.