Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) ================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) Control Group v2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3) ================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5) :Date: October, 2015
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6) :Author: Tejun Heo <tj@kernel.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) This is the authoritative documentation on the design, interface and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) conventions of cgroup v2.  It describes all userland-visible aspects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) of cgroup including core and specific controller behaviors.  All
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) future changes must be reflected in this document.  Documentation for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) v1 is available under :ref:`Documentation/admin-guide/cgroup-v1/index.rst <cgroup-v1>`.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) .. CONTENTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)    1. Introduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)      1-1. Terminology
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)      1-2. What is cgroup?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)    2. Basic Operations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)      2-1. Mounting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)      2-2. Organizing Processes and Threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)        2-2-1. Processes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)        2-2-2. Threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)      2-3. [Un]populated Notification
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)      2-4. Controlling Controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)        2-4-1. Enabling and Disabling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)        2-4-2. Top-down Constraint
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)        2-4-3. No Internal Process Constraint
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)      2-5. Delegation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)        2-5-1. Model of Delegation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)        2-5-2. Delegation Containment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)      2-6. Guidelines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33)        2-6-1. Organize Once and Control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)        2-6-2. Avoid Name Collisions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)    3. Resource Distribution Models
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)      3-1. Weights
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)      3-2. Limits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)      3-3. Protections
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)      3-4. Allocations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)    4. Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)      4-1. Format
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)      4-2. Conventions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43)      4-3. Core Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44)    5. Controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45)      5-1. CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46)        5-1-1. CPU Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47)      5-2. Memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48)        5-2-1. Memory Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49)        5-2-2. Usage Guidelines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50)        5-2-3. Memory Ownership
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)      5-3. IO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52)        5-3-1. IO Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53)        5-3-2. Writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54)        5-3-3. IO Latency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55)          5-3-3-1. How IO Latency Throttling Works
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56)          5-3-3-2. IO Latency Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57)        5-3-4. IO Priority
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58)      5-4. PID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)        5-4-1. PID Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)      5-5. Cpuset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)        5.5-1. Cpuset Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62)      5-6. Device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63)      5-7. RDMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)        5-7-1. RDMA Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)      5-8. HugeTLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)        5.8-1. HugeTLB Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67)      5-8. Misc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68)        5-8-1. perf_event
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69)      5-N. Non-normative information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70)        5-N-1. CPU controller root cgroup process behaviour
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)        5-N-2. IO controller root cgroup process behaviour
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72)    6. Namespace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73)      6-1. Basics
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74)      6-2. The Root and Views
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75)      6-3. Migration and setns(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76)      6-4. Interaction with Other Namespaces
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77)    P. Information on Kernel Programming
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78)      P-1. Filesystem Support for Writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79)    D. Deprecated v1 Core Features
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80)    R. Issues with v1 and Rationales for v2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81)      R-1. Multiple Hierarchies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82)      R-2. Thread Granularity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83)      R-3. Competition Between Inner Nodes and Threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84)      R-4. Other Interface Issues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85)      R-5. Controller Issues and Remedies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86)        R-5-1. Memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) Introduction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) ============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) Terminology
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) -----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) "cgroup" stands for "control group" and is never capitalized.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) singular form is used to designate the whole feature and also as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) qualifier as in "cgroup controllers".  When explicitly referring to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) multiple individual control groups, the plural form "cgroups" is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) What is cgroup?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) ---------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) cgroup is a mechanism to organize processes hierarchically and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) distribute system resources along the hierarchy in a controlled and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) configurable manner.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) cgroup is largely composed of two parts - the core and controllers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) cgroup core is primarily responsible for hierarchically organizing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) processes.  A cgroup controller is usually responsible for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) distributing a specific type of system resource along the hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) although there are utility controllers which serve purposes other than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) resource distribution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) cgroups form a tree structure and every process in the system belongs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) to one and only one cgroup.  All threads of a process belong to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) same cgroup.  On creation, all processes are put in the cgroup that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) the parent process belongs to at the time.  A process can be migrated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) to another cgroup.  Migration of a process doesn't affect already
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) existing descendant processes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) Following certain structural constraints, controllers may be enabled or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) disabled selectively on a cgroup.  All controller behaviors are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) hierarchical - if a controller is enabled on a cgroup, it affects all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) processes which belong to the cgroups consisting the inclusive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) sub-hierarchy of the cgroup.  When a controller is enabled on a nested
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) cgroup, it always restricts the resource distribution further.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) restrictions set closer to the root in the hierarchy can not be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) overridden from further away.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) Basic Operations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) ================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) Mounting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) --------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) Unlike v1, cgroup v2 has only single hierarchy.  The cgroup v2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) hierarchy can be mounted with the following mount command::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141)   # mount -t cgroup2 none $MOUNT_POINT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) cgroup2 filesystem has the magic number 0x63677270 ("cgrp").  All
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) controllers which support v2 and are not bound to a v1 hierarchy are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) automatically bound to the v2 hierarchy and show up at the root.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) Controllers which are not in active use in the v2 hierarchy can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) bound to other hierarchies.  This allows mixing v2 hierarchy with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) legacy v1 multiple hierarchies in a fully backward compatible way.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) A controller can be moved across hierarchies only after the controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) is no longer referenced in its current hierarchy.  Because per-cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) controller states are destroyed asynchronously and controllers may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) have lingering references, a controller may not show up immediately on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) the v2 hierarchy after the final umount of the previous hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) Similarly, a controller should be fully disabled to be moved out of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) the unified hierarchy and it may take some time for the disabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) controller to become available for other hierarchies; furthermore, due
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) to inter-controller dependencies, other controllers may need to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) disabled too.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) While useful for development and manual configurations, moving
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) controllers dynamically between the v2 and other hierarchies is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) strongly discouraged for production use.  It is recommended to decide
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) the hierarchies and controller associations before starting using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) controllers after system boot.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) During transition to v2, system management software might still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) automount the v1 cgroup filesystem and so hijack all controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) during boot, before manual intervention is possible. To make testing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) and experimenting easier, the kernel parameter cgroup_no_v1= allows
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) disabling controllers in v1 and make them always available in v2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) cgroup v2 currently supports the following mount options.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175)   nsdelegate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	Consider cgroup namespaces as delegation boundaries.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	option is system wide and can only be set on mount or modified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	through remount from the init namespace.  The mount option is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	ignored on non-init namespace mounts.  Please refer to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 	Delegation section for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183)   memory_localevents
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185)         Only populate memory.events with data for the current cgroup,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186)         and not any subtrees. This is legacy behaviour, the default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187)         behaviour without this option is to include subtree counts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188)         This option is system wide and can only be set on mount or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189)         modified through remount from the init namespace. The mount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190)         option is ignored on non-init namespace mounts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192)   memory_recursiveprot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194)         Recursively apply memory.min and memory.low protection to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195)         entire subtrees, without requiring explicit downward
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196)         propagation into leaf cgroups.  This allows protecting entire
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197)         subtrees from one another, while retaining free competition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198)         within those subtrees.  This should have been the default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199)         behavior but is a mount-option to avoid regressing setups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200)         relying on the original semantics (e.g. specifying bogusly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201)         high 'bypass' protection values at higher tree levels).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) Organizing Processes and Threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) --------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) Processes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) ~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) Initially, only the root cgroup exists to which all processes belong.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) A child cgroup can be created by creating a sub-directory::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213)   # mkdir $CGROUP_NAME
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) A given cgroup may have multiple child cgroups forming a tree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) structure.  Each cgroup has a read-writable interface file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) "cgroup.procs".  When read, it lists the PIDs of all processes which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) belong to the cgroup one-per-line.  The PIDs are not ordered and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) same PID may show up more than once if the process got moved to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) another cgroup and then back or the PID got recycled while reading.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) A process can be migrated into a cgroup by writing its PID to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) target cgroup's "cgroup.procs" file.  Only one process can be migrated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) on a single write(2) call.  If a process is composed of multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) threads, writing the PID of any thread migrates all threads of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) When a process forks a child process, the new process is born into the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) cgroup that the forking process belongs to at the time of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) operation.  After exit, a process stays associated with the cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) that it belonged to at the time of exit until it's reaped; however, a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) zombie process does not appear in "cgroup.procs" and thus can't be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) moved to another cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) A cgroup which doesn't have any children or live processes can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) destroyed by removing the directory.  Note that a cgroup which doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) have any children and is associated only with zombie processes is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) considered empty and can be removed::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240)   # rmdir $CGROUP_NAME
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) "/proc/$PID/cgroup" lists a process's cgroup membership.  If legacy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) cgroup is in use in the system, this file may contain multiple lines,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) one for each hierarchy.  The entry for cgroup v2 is always in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) format "0::$PATH"::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247)   # cat /proc/842/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248)   ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249)   0::/test-cgroup/test-cgroup-nested
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) If the process becomes a zombie and the cgroup it was associated with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) is removed subsequently, " (deleted)" is appended to the path::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254)   # cat /proc/842/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255)   ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256)   0::/test-cgroup/test-cgroup-nested (deleted)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) Threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) ~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) cgroup v2 supports thread granularity for a subset of controllers to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) support use cases requiring hierarchical resource distribution across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) the threads of a group of processes.  By default, all threads of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) process belong to the same cgroup, which also serves as the resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) domain to host resource consumptions which are not specific to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) process or thread.  The thread mode allows threads to be spread across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) a subtree while still maintaining the common resource domain for them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) Controllers which support thread mode are called threaded controllers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) The ones which don't are called domain controllers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) Marking a cgroup threaded makes it join the resource domain of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) parent as a threaded cgroup.  The parent may be another threaded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) cgroup whose resource domain is further up in the hierarchy.  The root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) of a threaded subtree, that is, the nearest ancestor which is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) threaded, is called threaded domain or thread root interchangeably and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) serves as the resource domain for the entire subtree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) Inside a threaded subtree, threads of a process can be put in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) different cgroups and are not subject to the no internal process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) constraint - threaded controllers can be enabled on non-leaf cgroups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) whether they have threads in them or not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) As the threaded domain cgroup hosts all the domain resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) consumptions of the subtree, it is considered to have internal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) resource consumptions whether there are processes in it or not and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) can't have populated child cgroups which aren't threaded.  Because the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) root cgroup is not subject to no internal process constraint, it can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) serve both as a threaded domain and a parent to domain cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) The current operation mode or type of the cgroup is shown in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) "cgroup.type" file which indicates whether the cgroup is a normal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) domain, a domain which is serving as the domain of a threaded subtree,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) or a threaded cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) On creation, a cgroup is always a domain cgroup and can be made
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) threaded by writing "threaded" to the "cgroup.type" file.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) operation is single direction::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301)   # echo threaded > cgroup.type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) Once threaded, the cgroup can't be made a domain again.  To enable the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) thread mode, the following conditions must be met.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) - As the cgroup will join the parent's resource domain.  The parent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307)   must either be a valid (threaded) domain or a threaded cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) - When the parent is an unthreaded domain, it must not have any domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310)   controllers enabled or populated domain children.  The root is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311)   exempt from this requirement.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) Topology-wise, a cgroup can be in an invalid state.  Please consider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) the following topology::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316)   A (threaded domain) - B (threaded) - C (domain, just created)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) C is created as a domain but isn't connected to a parent which can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) host child domains.  C can't be used until it is turned into a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) threaded cgroup.  "cgroup.type" file will report "domain (invalid)" in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) these cases.  Operations which fail due to invalid topology use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) EOPNOTSUPP as the errno.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) A domain cgroup is turned into a threaded domain when one of its child
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) cgroup becomes threaded or threaded controllers are enabled in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) "cgroup.subtree_control" file while there are processes in the cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) A threaded domain reverts to a normal domain when the conditions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) clear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) When read, "cgroup.threads" contains the list of the thread IDs of all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) threads in the cgroup.  Except that the operations are per-thread
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) instead of per-process, "cgroup.threads" has the same format and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) behaves the same way as "cgroup.procs".  While "cgroup.threads" can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) written to in any cgroup, as it can only move threads inside the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) threaded domain, its operations are confined inside each threaded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) subtree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) The threaded domain cgroup serves as the resource domain for the whole
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) subtree, and, while the threads can be scattered across the subtree,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) all the processes are considered to be in the threaded domain cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) "cgroup.procs" in a threaded domain cgroup contains the PIDs of all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) processes in the subtree and is not readable in the subtree proper.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) However, "cgroup.procs" can be written to from anywhere in the subtree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) to migrate all threads of the matching process to the cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) Only threaded controllers can be enabled in a threaded subtree.  When
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) a threaded controller is enabled inside a threaded subtree, it only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) accounts for and controls resource consumptions associated with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) threads in the cgroup and its descendants.  All consumptions which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) aren't tied to a specific thread belong to the threaded domain cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) Because a threaded subtree is exempt from no internal process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) constraint, a threaded controller must be able to handle competition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) between threads in a non-leaf cgroup and its child cgroups.  Each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) threaded controller defines how such competitions are handled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) [Un]populated Notification
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) --------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) Each non-root cgroup has a "cgroup.events" file which contains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) "populated" field indicating whether the cgroup's sub-hierarchy has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) live processes in it.  Its value is 0 if there is no live process in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) the cgroup and its descendants; otherwise, 1.  poll and [id]notify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) events are triggered when the value changes.  This can be used, for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) example, to start a clean-up operation after all processes of a given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) sub-hierarchy have exited.  The populated state updates and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) notifications are recursive.  Consider the following sub-hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) where the numbers in the parentheses represent the numbers of processes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) in each cgroup::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372)   A(4) - B(0) - C(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373)               \ D(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) A, B and C's "populated" fields would be 1 while D's 0.  After the one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) process in C exits, B and C's "populated" fields would flip to "0" and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) file modified events will be generated on the "cgroup.events" files of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) both cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) Controlling Controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) -----------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) Enabling and Disabling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) ~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) Each cgroup has a "cgroup.controllers" file which lists all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) controllers available for the cgroup to enable::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390)   # cat cgroup.controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391)   cpu io memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) No controller is enabled by default.  Controllers can be enabled and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) disabled by writing to the "cgroup.subtree_control" file::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396)   # echo "+cpu +memory -io" > cgroup.subtree_control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) Only controllers which are listed in "cgroup.controllers" can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) enabled.  When multiple operations are specified as above, either they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) all succeed or fail.  If multiple operations on the same controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) are specified, the last one is effective.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) Enabling a controller in a cgroup indicates that the distribution of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) the target resource across its immediate children will be controlled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) Consider the following sub-hierarchy.  The enabled controllers are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) listed in parentheses::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408)   A(cpu,memory) - B(memory) - C()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409)                             \ D()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) As A has "cpu" and "memory" enabled, A will control the distribution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) of CPU cycles and memory to its children, in this case, B.  As B has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) "memory" enabled but not "CPU", C and D will compete freely on CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) cycles but their division of memory available to B will be controlled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) As a controller regulates the distribution of the target resource to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) the cgroup's children, enabling it creates the controller's interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) files in the child cgroups.  In the above example, enabling "cpu" on B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) would create the "cpu." prefixed controller interface files in C and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) D.  Likewise, disabling "memory" from B would remove the "memory."
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) prefixed controller interface files from C and D.  This means that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) controller interface files - anything which doesn't start with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) "cgroup." are owned by the parent rather than the cgroup itself.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) Top-down Constraint
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) ~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) Resources are distributed top-down and a cgroup can further distribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) a resource only if the resource has been distributed to it from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) parent.  This means that all non-root "cgroup.subtree_control" files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) can only contain controllers which are enabled in the parent's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) "cgroup.subtree_control" file.  A controller can be enabled only if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) the parent has the controller enabled and a controller can't be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) disabled if one or more children have it enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) No Internal Process Constraint
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) Non-root cgroups can distribute domain resources to their children
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) only when they don't have any processes of their own.  In other words,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) only domain cgroups which don't contain any processes can have domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) controllers enabled in their "cgroup.subtree_control" files.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) This guarantees that, when a domain controller is looking at the part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) of the hierarchy which has it enabled, processes are always only on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) the leaves.  This rules out situations where child cgroups compete
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) against internal processes of the parent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) The root cgroup is exempt from this restriction.  Root contains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) processes and anonymous resource consumption which can't be associated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) with any other cgroups and requires special treatment from most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) controllers.  How resource consumption in the root cgroup is governed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) is up to each controller (for more information on this topic please
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) refer to the Non-normative information section in the Controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) chapter).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) Note that the restriction doesn't get in the way if there is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) enabled controller in the cgroup's "cgroup.subtree_control".  This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) important as otherwise it wouldn't be possible to create children of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) populated cgroup.  To control resource distribution of a cgroup, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) cgroup must create children and transfer all its processes to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) children before enabling controllers in its "cgroup.subtree_control"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) Delegation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) ----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) Model of Delegation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) ~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) A cgroup can be delegated in two ways.  First, to a less privileged
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) user by granting write access of the directory and its "cgroup.procs",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) "cgroup.threads" and "cgroup.subtree_control" files to the user.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) Second, if the "nsdelegate" mount option is set, automatically to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) cgroup namespace on namespace creation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) Because the resource control interface files in a given directory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) control the distribution of the parent's resources, the delegatee
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) shouldn't be allowed to write to them.  For the first method, this is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) achieved by not granting access to these files.  For the second, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) kernel rejects writes to all files other than "cgroup.procs" and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) "cgroup.subtree_control" on a namespace root from inside the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) The end results are equivalent for both delegation types.  Once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) delegated, the user can build sub-hierarchy under the directory,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) organize processes inside it as it sees fit and further distribute the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) resources it received from the parent.  The limits and other settings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) of all resource controllers are hierarchical and regardless of what
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) happens in the delegated sub-hierarchy, nothing can escape the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) resource restrictions imposed by the parent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) Currently, cgroup doesn't impose any restrictions on the number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) cgroups in or nesting depth of a delegated sub-hierarchy; however,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) this may be limited explicitly in the future.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) Delegation Containment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) ~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) A delegated sub-hierarchy is contained in the sense that processes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) can't be moved into or out of the sub-hierarchy by the delegatee.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) For delegations to a less privileged user, this is achieved by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) requiring the following conditions for a process with a non-root euid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) to migrate a target process into a cgroup by writing its PID to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) "cgroup.procs" file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) - The writer must have write access to the "cgroup.procs" file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) - The writer must have write access to the "cgroup.procs" file of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515)   common ancestor of the source and destination cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) The above two constraints ensure that while a delegatee may migrate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) processes around freely in the delegated sub-hierarchy it can't pull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) in from or push out to outside the sub-hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) For an example, let's assume cgroups C0 and C1 have been delegated to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) user U0 who created C00, C01 under C0 and C10 under C1 as follows and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) all processes under C0 and C1 belong to U0::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525)   ~~~~~~~~~~~~~ - C0 - C00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526)   ~ cgroup    ~      \ C01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527)   ~ hierarchy ~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528)   ~~~~~~~~~~~~~ - C1 - C10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) Let's also say U0 wants to write the PID of a process which is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) currently in C10 into "C00/cgroup.procs".  U0 has write access to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) file; however, the common ancestor of the source cgroup C10 and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) destination cgroup C00 is above the points of delegation and U0 would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) not have write access to its "cgroup.procs" files and thus the write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) will be denied with -EACCES.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) For delegations to namespaces, containment is achieved by requiring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) that both the source and destination cgroups are reachable from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) namespace of the process which is attempting the migration.  If either
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) is not reachable, the migration is rejected with -ENOENT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) Guidelines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) ----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) Organize Once and Control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) ~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) Migrating a process across cgroups is a relatively expensive operation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) and stateful resources such as memory are not moved together with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) process.  This is an explicit design decision as there often exist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) inherent trade-offs between migration and various hot paths in terms
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) of synchronization cost.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) As such, migrating processes across cgroups frequently as a means to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) apply different resource restrictions is discouraged.  A workload
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) should be assigned to a cgroup according to the system's logical and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) resource structure once on start-up.  Dynamic adjustments to resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) distribution can be made by changing controller configuration through
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) the interface files.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) Avoid Name Collisions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) ~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) Interface files for a cgroup and its children cgroups occupy the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) directory and it is possible to create children cgroups which collide
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) with interface files.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) All cgroup core interface files are prefixed with "cgroup." and each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) controller's interface files are prefixed with the controller name and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) a dot.  A controller's name is composed of lower case alphabets and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) '_'s but never begins with an '_' so it can be used as the prefix
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) character for collision avoidance.  Also, interface file names won't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) start or end with terms which are often used in categorizing workloads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) such as job, service, slice, unit or workload.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) cgroup doesn't do anything to prevent name collisions and it's the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) user's responsibility to avoid them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) Resource Distribution Models
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) ============================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) cgroup controllers implement several resource distribution schemes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) depending on the resource type and expected use cases.  This section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) describes major schemes in use along with their expected behaviors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) Weights
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) -------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) A parent's resource is distributed by adding up the weights of all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) active children and giving each the fraction matching the ratio of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) weight against the sum.  As only children which can make use of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) resource at the moment participate in the distribution, this is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) work-conserving.  Due to the dynamic nature, this model is usually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) used for stateless resources.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) All weights are in the range [1, 10000] with the default at 100.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) allows symmetric multiplicative biases in both directions at fine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) enough granularity while staying in the intuitive range.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) As long as the weight is in range, all configuration combinations are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) valid and there is no reason to reject configuration changes or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) process migrations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) "cpu.weight" proportionally distributes CPU cycles to active children
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) and is an example of this type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) Limits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) ------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) A child can only consume upto the configured amount of the resource.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) Limits can be over-committed - the sum of the limits of children can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) exceed the amount of resource available to the parent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) Limits are in the range [0, max] and defaults to "max", which is noop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) As limits can be over-committed, all configuration combinations are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) valid and there is no reason to reject configuration changes or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) process migrations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) "io.max" limits the maximum BPS and/or IOPS that a cgroup can consume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) on an IO device and is an example of this type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) Protections
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) -----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) A cgroup is protected upto the configured amount of the resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) as long as the usages of all its ancestors are under their
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) protected levels.  Protections can be hard guarantees or best effort
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) soft boundaries.  Protections can also be over-committed in which case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) only upto the amount available to the parent is protected among
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) children.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) Protections are in the range [0, max] and defaults to 0, which is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) noop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) As protections can be over-committed, all configuration combinations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) are valid and there is no reason to reject configuration changes or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) process migrations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) "memory.low" implements best-effort memory protection and is an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) example of this type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) Allocations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) -----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) A cgroup is exclusively allocated a certain amount of a finite
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) resource.  Allocations can't be over-committed - the sum of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) allocations of children can not exceed the amount of resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) available to the parent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) Allocations are in the range [0, max] and defaults to 0, which is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) resource.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) As allocations can't be over-committed, some configuration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) combinations are invalid and should be rejected.  Also, if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) resource is mandatory for execution of processes, process migrations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) may be rejected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) "cpu.rt.max" hard-allocates realtime slices and is an example of this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) ===============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) Format
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) ------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) All interface files should be in one of the following formats whenever
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) possible::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679)   New-line separated values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680)   (when only one value can be written at once)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	VAL0\n
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	VAL1\n
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686)   Space separated values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687)   (when read-only or multiple values can be written at once)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	VAL0 VAL1 ...\n
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691)   Flat keyed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	KEY0 VAL0\n
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	KEY1 VAL1\n
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697)   Nested keyed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	KEY0 SUB_KEY0=VAL00 SUB_KEY1=VAL01...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 	KEY1 SUB_KEY0=VAL10 SUB_KEY1=VAL11...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) For a writable file, the format for writing should generally match
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) reading; however, controllers may allow omitting later fields or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) implement restricted shortcuts for most common use cases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) For both flat and nested keyed files, only the values for a single key
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) can be written at a time.  For nested keyed files, the sub key pairs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) may be specified in any order and not all pairs have to be specified.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) Conventions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) -----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) - Settings for a single feature should be contained in a single file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) - The root cgroup should be exempt from resource control and thus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718)   shouldn't have resource control interface files.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) - The default time unit is microseconds.  If a different unit is ever
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721)   used, an explicit unit suffix must be present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) - A parts-per quantity should use a percentage decimal with at least
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724)   two digit fractional part - e.g. 13.40.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) - If a controller implements weight based resource distribution, its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727)   interface file should be named "weight" and have the range [1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728)   10000] with 100 as the default.  The values are chosen to allow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729)   enough and symmetric bias in both directions while keeping it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730)   intuitive (the default is 100%).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) - If a controller implements an absolute resource guarantee and/or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733)   limit, the interface files should be named "min" and "max"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734)   respectively.  If a controller implements best effort resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735)   guarantee and/or limit, the interface files should be named "low"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736)   and "high" respectively.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738)   In the above four control files, the special token "max" should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739)   used to represent upward infinity for both reading and writing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) - If a setting has a configurable default value and keyed specific
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742)   overrides, the default entry should be keyed with "default" and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743)   appear as the first entry in the file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745)   The default value can be updated by writing either "default $VAL" or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746)   "$VAL".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748)   When writing to update a specific override, "default" can be used as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749)   the value to indicate removal of the override.  Override entries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750)   with "default" as the value must not appear when read.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752)   For example, a setting which is keyed by major:minor device numbers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753)   with integer values may look like the following::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755)     # cat cgroup-example-interface-file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756)     default 150
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757)     8:0 300
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759)   The default value can be updated by::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761)     # echo 125 > cgroup-example-interface-file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763)   or::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765)     # echo "default 125" > cgroup-example-interface-file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767)   An override can be set by::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769)     # echo "8:16 170" > cgroup-example-interface-file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771)   and cleared by::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773)     # echo "8:0 default" > cgroup-example-interface-file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774)     # cat cgroup-example-interface-file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775)     default 125
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776)     8:16 170
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) - For events which are not very high frequency, an interface file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779)   "events" should be created which lists event key value pairs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780)   Whenever a notifiable event happens, file modified event should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781)   generated on the file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) Core Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) --------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) All cgroup core files are prefixed with "cgroup."
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789)   cgroup.type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	When read, it indicates the current type of the cgroup, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	can be one of the following values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	- "domain" : A normal valid domain cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	- "domain threaded" : A threaded domain cgroup which is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800)           serving as the root of a threaded subtree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	- "domain invalid" : A cgroup which is in an invalid state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	  It can't be populated or have controllers enabled.  It may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	  be allowed to become a threaded cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	- "threaded" : A threaded cgroup which is a member of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807)           threaded subtree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	A cgroup can be turned into a threaded cgroup by writing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 	"threaded" to this file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812)   cgroup.procs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	A read-write new-line separated values file which exists on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	all cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	When read, it lists the PIDs of all processes which belong to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	the cgroup one-per-line.  The PIDs are not ordered and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	same PID may show up more than once if the process got moved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	to another cgroup and then back or the PID got recycled while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	reading.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	A PID can be written to migrate the process associated with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	the PID to the cgroup.  The writer should match all of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	following conditions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	- It must have write access to the "cgroup.procs" file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	- It must have write access to the "cgroup.procs" file of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	  common ancestor of the source and destination cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	When delegating a sub-hierarchy, write access to this file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 	should be granted along with the containing directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 	In a threaded cgroup, reading this file fails with EOPNOTSUPP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 	as all the processes belong to the thread root.  Writing is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	supported and moves every thread of the process to the cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838)   cgroup.threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	A read-write new-line separated values file which exists on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 	all cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	When read, it lists the TIDs of all threads which belong to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	the cgroup one-per-line.  The TIDs are not ordered and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	same TID may show up more than once if the thread got moved to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	another cgroup and then back or the TID got recycled while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 	reading.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	A TID can be written to migrate the thread associated with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 	TID to the cgroup.  The writer should match all of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	following conditions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	- It must have write access to the "cgroup.threads" file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	- The cgroup that the thread is currently in must be in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855)           same resource domain as the destination cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	- It must have write access to the "cgroup.procs" file of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	  common ancestor of the source and destination cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	When delegating a sub-hierarchy, write access to this file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	should be granted along with the containing directory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863)   cgroup.controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	A read-only space separated values file which exists on all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	It shows space separated list of all controllers available to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	the cgroup.  The controllers are not ordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870)   cgroup.subtree_control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	A read-write space separated values file which exists on all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	cgroups.  Starts out empty.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	When read, it shows space separated list of the controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	which are enabled to control resource distribution from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	cgroup to its children.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	Space separated list of controllers prefixed with '+' or '-'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	can be written to enable or disable controllers.  A controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	name prefixed with '+' enables the controller and '-'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	disables.  If a controller appears more than once on the list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	the last one is effective.  When multiple enable and disable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	operations are specified, either all succeed or all fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885)   cgroup.events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	A read-only flat-keyed file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	The following entries are defined.  Unless specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	otherwise, a value change in this file generates a file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	modified event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	  populated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 		1 if the cgroup or its descendants contains any live
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 		processes; otherwise, 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	  frozen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		1 if the cgroup is frozen; otherwise, 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897)   cgroup.max.descendants
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	A read-write single value files.  The default is "max".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	Maximum allowed number of descent cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	If the actual number of descendants is equal or larger,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	an attempt to create a new cgroup in the hierarchy will fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904)   cgroup.max.depth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	A read-write single value files.  The default is "max".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	Maximum allowed descent depth below the current cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	If the actual descent depth is equal or larger,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	an attempt to create a new child cgroup will fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911)   cgroup.stat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	A read-only flat-keyed file with the following entries:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	  nr_descendants
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		Total number of visible descendant cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	  nr_dying_descendants
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 		Total number of dying descendant cgroups. A cgroup becomes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 		dying after being deleted by a user. The cgroup will remain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 		in dying state for some time undefined time (which can depend
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 		on system load) before being completely destroyed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		A process can't enter a dying cgroup under any circumstances,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 		a dying cgroup can't revive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		A dying cgroup can consume system resources not exceeding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 		limits, which were active at the moment of cgroup deletion.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929)   cgroup.freeze
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	A read-write single value file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	Allowed values are "0" and "1". The default is "0".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	Writing "1" to the file causes freezing of the cgroup and all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	descendant cgroups. This means that all belonging processes will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	be stopped and will not run until the cgroup will be explicitly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	unfrozen. Freezing of the cgroup may take some time; when this action
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	is completed, the "frozen" value in the cgroup.events control file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	will be updated to "1" and the corresponding notification will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	issued.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	A cgroup can be frozen either by its own settings, or by settings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	of any ancestor cgroups. If any of ancestor cgroups is frozen, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	cgroup will remain frozen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	Processes in the frozen cgroup can be killed by a fatal signal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	They also can enter and leave a frozen cgroup: either by an explicit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	move by a user, or if freezing of the cgroup races with fork().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	If a process is moved to a frozen cgroup, it stops. If a process is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	moved out of a frozen cgroup, it becomes running.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	Frozen status of a cgroup doesn't affect any cgroup tree operations:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	it's possible to delete a frozen (and empty) cgroup, as well as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	create new sub-cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) Controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) ===========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) ---
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) The "cpu" controllers regulates distribution of CPU cycles.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) controller implements weight and absolute bandwidth limit models for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) normal scheduling policy and absolute bandwidth allocation model for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) realtime scheduling policy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) In all the above models, cycles distribution is defined only on a temporal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) base and it does not account for the frequency at which tasks are executed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) The (optional) utilization clamping support allows to hint the schedutil
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) cpufreq governor about the minimum desired frequency which should always be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) provided by a CPU, as well as the maximum desired frequency, which should not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) be exceeded by a CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) WARNING: cgroup2 doesn't yet support control of realtime processes and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) the cpu controller can only be enabled when all RT processes are in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) the root cgroup.  Be aware that system management software may already
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) have placed RT processes into nonroot cgroups during the system boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) process, and these processes may need to be moved to the root cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) before the cpu controller can be enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) CPU Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) ~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) All time durations are in microseconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986)   cpu.stat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	A read-only flat-keyed file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	This file exists whether the controller is enabled or not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	It always reports the following three stats:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	- usage_usec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	- user_usec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	- system_usec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	and the following three when the controller is enabled:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	- nr_periods
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	- nr_throttled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	- throttled_usec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002)   cpu.weight
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	cgroups.  The default is "100".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	The weight in the range [1, 10000].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008)   cpu.weight.nice
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	cgroups.  The default is "0".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	The nice value is in the range [-20, 19].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 	This interface file is an alternative interface for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	"cpu.weight" and allows reading and setting weight using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	same values used by nice(2).  Because the range is smaller and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	granularity is coarser for the nice values, the read value is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 	the closest approximation of the current weight.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020)   cpu.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	A read-write two value file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	The default is "max 100000".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	The maximum bandwidth limit.  It's in the following format::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	  $MAX $PERIOD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	which indicates that the group may consume upto $MAX in each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	$PERIOD duration.  "max" for $MAX indicates no limit.  If only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	one number is written, $MAX is updated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032)   cpu.pressure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	A read-only nested-key file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 	Shows pressure stall information for CPU. See
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	:ref:`Documentation/accounting/psi.rst <psi>` for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038)   cpu.uclamp.min
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039)         A read-write single value file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040)         The default is "0", i.e. no utilization boosting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042)         The requested minimum utilization (protection) as a percentage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043)         rational number, e.g. 12.34 for 12.34%.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)         This interface allows reading and setting minimum utilization clamp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046)         values similar to the sched_setattr(2). This minimum utilization
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047)         value is used to clamp the task specific minimum utilization clamp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)         The requested minimum utilization (protection) is always capped by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050)         the current value for the maximum utilization (limit), i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)         `cpu.uclamp.max`.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)   cpu.uclamp.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054)         A read-write single value file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055)         The default is "max". i.e. no utilization capping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057)         The requested maximum utilization (limit) as a percentage rational
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058)         number, e.g. 98.76 for 98.76%.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060)         This interface allows reading and setting maximum utilization clamp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061)         values similar to the sched_setattr(2). This maximum utilization
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062)         value is used to clamp the task specific maximum utilization clamp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) Memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) ------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) The "memory" controller regulates distribution of memory.  Memory is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) stateful and implements both limit and protection models.  Due to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) intertwining between memory usage and reclaim pressure and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) stateful nature of memory, the distribution model is relatively
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) complex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) While not completely water-tight, all major memory usages by a given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) cgroup are tracked so that the total memory consumption can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) accounted and controlled to a reasonable extent.  Currently, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) following types of memory usages are tracked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) - Userland memory - page cache and anonymous memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) - Kernel data structures such as dentries and inodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) - TCP socket buffers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) The above list may expand in the future for better coverage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) Memory Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) ~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) All memory amounts are in bytes.  If a value which is not aligned to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) PAGE_SIZE is written, the value may be rounded up to the closest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) PAGE_SIZE multiple when read back.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096)   memory.current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	A read-only single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	The total amount of memory currently being used by the cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	and its descendants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103)   memory.min
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	cgroups.  The default is "0".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	Hard memory protection.  If the memory usage of a cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 	is within its effective min boundary, the cgroup's memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	won't be reclaimed under any conditions. If there is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	unprotected reclaimable memory available, OOM killer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	is invoked. Above the effective min boundary (or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	effective low boundary if it is higher), pages are reclaimed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	proportionally to the overage, reducing reclaim pressure for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	smaller overages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	Effective min boundary is limited by memory.min values of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	all ancestor cgroups. If there is memory.min overcommitment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	(child cgroup or cgroups are requiring more protected memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	than parent will allow), then each child cgroup will get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	the part of parent's protection proportional to its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	actual memory usage below memory.min.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 	Putting more memory than generally available under this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	protection is discouraged and may lead to constant OOMs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	If a memory cgroup is not populated with processes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 	its memory.min is ignored.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129)   memory.low
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 	cgroups.  The default is "0".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	Best-effort memory protection.  If the memory usage of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	cgroup is within its effective low boundary, the cgroup's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	memory won't be reclaimed unless there is no reclaimable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	memory available in unprotected cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	Above the effective low	boundary (or 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	effective min boundary if it is higher), pages are reclaimed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	proportionally to the overage, reducing reclaim pressure for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	smaller overages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	Effective low boundary is limited by memory.low values of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	all ancestor cgroups. If there is memory.low overcommitment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 	(child cgroup or cgroups are requiring more protected memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	than parent will allow), then each child cgroup will get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	the part of parent's protection proportional to its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	actual memory usage below memory.low.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 	Putting more memory than generally available under this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	protection is discouraged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152)   memory.high
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	cgroups.  The default is "max".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	Memory usage throttle limit.  This is the main mechanism to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	control memory usage of a cgroup.  If a cgroup's usage goes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	over the high boundary, the processes of the cgroup are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	throttled and put under heavy reclaim pressure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	Going over the high limit never invokes the OOM killer and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	under extreme conditions the limit may be breached.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164)   memory.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	cgroups.  The default is "max".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	Memory usage hard limit.  This is the final protection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	mechanism.  If a cgroup's memory usage reaches this limit and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	can't be reduced, the OOM killer is invoked in the cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	Under certain circumstances, the usage may go over the limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	temporarily.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	In default configuration regular 0-order allocations always
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	succeed unless OOM killer chooses current task as a victim.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	Some kinds of allocations don't invoke the OOM killer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	Caller could retry them differently, return into userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	as -ENOMEM or silently ignore in cases like disk readahead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	This is the ultimate protection mechanism.  As long as the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	high limit is used and monitored properly, this limit's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	utility is limited to providing the final safety net.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185)   memory.oom.group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 	cgroups.  The default value is "0".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	Determines whether the cgroup should be treated as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	an indivisible workload by the OOM killer. If set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	all tasks belonging to the cgroup or to its descendants
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	(if the memory cgroup is not a leaf cgroup) are killed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	together or not at all. This can be used to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	partial kills to guarantee workload integrity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	Tasks with the OOM protection (oom_score_adj set to -1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	are treated as an exception and are never killed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	If the OOM killer is invoked in a cgroup, it's not going
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	to kill any tasks outside of this cgroup, regardless
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	memory.oom.group values of ancestor cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203)   memory.events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	A read-only flat-keyed file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	The following entries are defined.  Unless specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	otherwise, a value change in this file generates a file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	modified event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	Note that all fields in this file are hierarchical and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	file modified event can be generated due to an event down the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	hierarchy. For for the local events at the cgroup level see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	memory.events.local.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	  low
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 		The number of times the cgroup is reclaimed due to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 		high memory pressure even though its usage is under
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 		the low boundary.  This usually indicates that the low
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 		boundary is over-committed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	  high
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 		The number of times processes of the cgroup are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 		throttled and routed to perform direct memory reclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 		because the high memory boundary was exceeded.  For a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 		cgroup whose memory usage is capped by the high limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 		rather than global memory pressure, this event's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 		occurrences are expected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	  max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		The number of times the cgroup's memory usage was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 		about to go over the max boundary.  If direct reclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		fails to bring it down, the cgroup goes to OOM state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	  oom
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 		The number of time the cgroup's memory usage was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 		reached the limit and allocation was about to fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 		This event is not raised if the OOM killer is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 		considered as an option, e.g. for failed high-order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 		allocations or if caller asked to not retry attempts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 	  oom_kill
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 		The number of processes belonging to this cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 		killed by any kind of OOM killer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245)   memory.events.local
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 	Similar to memory.events but the fields in the file are local
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	to the cgroup i.e. not hierarchical. The file modified event
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 	generated on this file reflects only the local events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250)   memory.stat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 	A read-only flat-keyed file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	This breaks down the cgroup's memory footprint into different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	types of memory, type-specific details, and other information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	on the state and past events of the memory management system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	All memory amounts are in bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	The entries are ordered to be human readable, and new entries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 	can show up in the middle. Don't rely on items remaining in a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 	fixed position; use the keys to look up specific values!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 	If the entry has no per-node counter(or not show in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	mempry.numa_stat). We use 'npn'(non-per-node) as the tag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	to indicate that it will not show in the mempry.numa_stat.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	  anon
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 		Amount of memory used in anonymous mappings such as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 		brk(), sbrk(), and mmap(MAP_ANONYMOUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 	  file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 		Amount of memory used to cache filesystem data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		including tmpfs and shared memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 	  kernel_stack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 		Amount of memory allocated to kernel stacks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 	  percpu(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 		Amount of memory used for storing per-cpu kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 		data structures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 	  sock(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 		Amount of memory used in network transmission buffers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 	  shmem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 		Amount of cached filesystem data that is swap-backed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 		such as tmpfs, shm segments, shared anonymous mmap()s
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	  file_mapped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 		Amount of cached filesystem data mapped with mmap()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	  file_dirty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 		Amount of cached filesystem data that was modified but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 		not yet written back to disk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 	  file_writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 		Amount of cached filesystem data that was modified and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 		is currently being written back to disk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	  anon_thp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 		Amount of memory used in anonymous mappings backed by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 		transparent hugepages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	  inactive_anon, active_anon, inactive_file, active_file, unevictable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 		Amount of memory, swap-backed and filesystem-backed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 		on the internal memory management lists used by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 		page reclaim algorithm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 		As these represent internal list state (eg. shmem pages are on anon
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 		memory management lists), inactive_foo + active_foo may not be equal to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 		the value for the foo counter, since the foo counter is type-based, not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 		list-based.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	  slab_reclaimable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 		Part of "slab" that might be reclaimed, such as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 		dentries and inodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	  slab_unreclaimable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 		Part of "slab" that cannot be reclaimed on memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 		pressure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 	  slab(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 		Amount of memory used for storing in-kernel data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 		structures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	  workingset_refault_anon
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 		Number of refaults of previously evicted anonymous pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	  workingset_refault_file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 		Number of refaults of previously evicted file pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	  workingset_activate_anon
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 		Number of refaulted anonymous pages that were immediately
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 		activated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	  workingset_activate_file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 		Number of refaulted file pages that were immediately activated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	  workingset_restore_anon
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 		Number of restored anonymous pages which have been detected as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 		an active workingset before they got reclaimed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	  workingset_restore_file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 		Number of restored file pages which have been detected as an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 		active workingset before they got reclaimed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	  workingset_nodereclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 		Number of times a shadow node has been reclaimed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 	  pgfault(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 		Total number of page faults incurred
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	  pgmajfault(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 		Number of major page faults incurred
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	  pgrefill(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 		Amount of scanned pages (in an active LRU list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	  pgscan(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 		Amount of scanned pages (in an inactive LRU list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	  pgsteal(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 		Amount of reclaimed pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	  pgactivate(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 		Amount of pages moved to the active LRU list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	  pgdeactivate(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 		Amount of pages moved to the inactive LRU list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 	  pglazyfree(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 		Amount of pages postponed to be freed under memory pressure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 	  pglazyfreed(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 		Amount of reclaimed lazyfree pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	  thp_fault_alloc(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 		Number of transparent hugepages which were allocated to satisfy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 		a page fault. This counter is not present when CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380)                 is not set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	  thp_collapse_alloc(npn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 		Number of transparent hugepages which were allocated to allow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 		collapsing an existing range of pages. This counter is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 		present when CONFIG_TRANSPARENT_HUGEPAGE is not set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387)   memory.numa_stat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 	A read-only nested-keyed file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 	This breaks down the cgroup's memory footprint into different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	types of memory, type-specific details, and other information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	per node on the state of the memory management system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 	This is useful for providing visibility into the NUMA locality
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	information within an memcg since the pages are allowed to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	allocated from any physical node. One of the use case is evaluating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	application performance by combining this information with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	application's CPU allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	All memory amounts are in bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 	The output format of memory.numa_stat is::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	  type N0=<bytes in node 0> N1=<bytes in node 1> ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	The entries are ordered to be human readable, and new entries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	can show up in the middle. Don't rely on items remaining in a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	fixed position; use the keys to look up specific values!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 	The entries can refer to the memory.stat.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412)   memory.swap.current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	A read-only single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 	cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	The total amount of swap currently being used by the cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	and its descendants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419)   memory.swap.high
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	cgroups.  The default is "max".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	Swap usage throttle limit.  If a cgroup's swap usage exceeds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 	this limit, all its further allocations will be throttled to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	allow userspace to implement custom out-of-memory procedures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 	This limit marks a point of no return for the cgroup. It is NOT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	designed to manage the amount of swapping a workload does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	during regular operation. Compare to memory.swap.max, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 	prohibits swapping past a set amount, but lets the cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 	continue unimpeded as long as other memory can be reclaimed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 	Healthy workloads are not expected to reach this limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435)   memory.swap.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	cgroups.  The default is "max".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 	Swap usage hard limit.  If a cgroup's swap usage reaches this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	limit, anonymous memory of the cgroup will not be swapped out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442)   memory.swap.events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 	A read-only flat-keyed file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 	The following entries are defined.  Unless specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 	otherwise, a value change in this file generates a file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 	modified event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 	  high
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 		The number of times the cgroup's swap usage was over
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 		the high threshold.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 	  max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 		The number of times the cgroup's swap usage was about
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 		to go over the max boundary and swap allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 		failed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 	  fail
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 		The number of times swap allocation failed either
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 		because of running out of swap system-wide or max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 		limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	When reduced under the current usage, the existing swap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 	entries are reclaimed gradually and the swap usage may stay
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 	higher than the limit for an extended period of time.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 	reduces the impact on the workload and memory management.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467)   memory.pressure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 	A read-only nested-key file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 	Shows pressure stall information for memory. See
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 	:ref:`Documentation/accounting/psi.rst <psi>` for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) Usage Guidelines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) ~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) "memory.high" is the main mechanism to control memory usage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) Over-committing on high limit (sum of high limits > available memory)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) and letting global memory pressure to distribute memory according to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) usage is a viable strategy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) Because breach of the high limit doesn't trigger the OOM killer but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) throttles the offending cgroup, a management agent has ample
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) opportunities to monitor and take appropriate actions such as granting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) more memory or terminating the workload.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) Determining whether a cgroup has enough memory is not trivial as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) memory usage doesn't indicate whether the workload can benefit from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) more memory.  For example, a workload which writes data received from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) network to a file can use all available memory but can also operate as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) performant with a small amount of memory.  A measure of memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) pressure - how much the workload is being impacted due to lack of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) memory - is necessary to determine whether a workload needs more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) memory; unfortunately, memory pressure monitoring mechanism isn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) implemented yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) Memory Ownership
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) ~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) A memory area is charged to the cgroup which instantiated it and stays
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) charged to the cgroup until the area is released.  Migrating a process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) to a different cgroup doesn't move the memory usages that it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) instantiated while in the previous cgroup to the new cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) A memory area may be used by processes belonging to different cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) To which cgroup the area will be charged is in-deterministic; however,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) over time, the memory area is likely to end up in a cgroup which has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) enough memory allowance to avoid high reclaim pressure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) If a cgroup sweeps a considerable amount of memory which is expected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) to be accessed repeatedly by other cgroups, it may make sense to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) POSIX_FADV_DONTNEED to relinquish the ownership of memory areas
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) belonging to the affected files to ensure correct memory ownership.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) IO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) --
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) The "io" controller regulates the distribution of IO resources.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) controller implements both weight based and absolute bandwidth or IOPS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) limit distribution; however, weight based distribution is available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) only if cfq-iosched is in use and neither scheme is available for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) blk-mq devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) IO Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) ~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530)   io.stat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 	A read-only nested-keyed file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 	Lines are keyed by $MAJ:$MIN device numbers and not ordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 	The following nested keys are defined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 	  ======	=====================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 	  rbytes	Bytes read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 	  wbytes	Bytes written
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 	  rios		Number of read IOs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 	  wios		Number of write IOs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 	  dbytes	Bytes discarded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 	  dios		Number of discard IOs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 	  ======	=====================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 	An example read output follows::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	  8:16 rbytes=1459200 wbytes=314773504 rios=192 wios=353 dbytes=0 dios=0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 	  8:0 rbytes=90430464 wbytes=299008000 rios=8950 wios=1252 dbytes=50331648 dios=3021
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550)   io.cost.qos
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 	A read-write nested-keyed file with exists only on the root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 	This file configures the Quality of Service of the IO cost
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	model based controller (CONFIG_BLK_CGROUP_IOCOST) which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	currently implements "io.weight" proportional control.  Lines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 	are keyed by $MAJ:$MIN device numbers and not ordered.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 	line for a given device is populated on the first write for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 	the device on "io.cost.qos" or "io.cost.model".  The following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 	nested keys are defined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 	  ======	=====================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	  enable	Weight-based control enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	  ctrl		"auto" or "user"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 	  rpct		Read latency percentile    [0, 100]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	  rlat		Read latency threshold
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 	  wpct		Write latency percentile   [0, 100]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	  wlat		Write latency threshold
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 	  min		Minimum scaling percentage [1, 10000]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	  max		Maximum scaling percentage [1, 10000]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	  ======	=====================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 	The controller is disabled by default and can be enabled by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 	setting "enable" to 1.  "rpct" and "wpct" parameters default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	to zero and the controller uses internal device saturation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	state to adjust the overall IO rate between "min" and "max".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	When a better control quality is needed, latency QoS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	parameters can be configured.  For example::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 	  8:16 enable=1 ctrl=auto rpct=95.00 rlat=75000 wpct=95.00 wlat=150000 min=50.00 max=150.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 	shows that on sdb, the controller is enabled, will consider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 	the device saturated if the 95th percentile of read completion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	latencies is above 75ms or write 150ms, and adjust the overall
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	IO issue rate between 50% and 150% accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 	The lower the saturation point, the better the latency QoS at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 	the cost of aggregate bandwidth.  The narrower the allowed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	adjustment range between "min" and "max", the more conformant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	to the cost model the IO behavior.  Note that the IO issue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	base rate may be far off from 100% and setting "min" and "max"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	blindly can lead to a significant loss of device capacity or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	control quality.  "min" and "max" are useful for regulating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	devices which show wide temporary behavior changes - e.g. a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 	ssd which accepts writes at the line speed for a while and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 	then completely stalls for multiple seconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 	When "ctrl" is "auto", the parameters are controlled by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 	kernel and may change automatically.  Setting "ctrl" to "user"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 	or setting any of the percentile and latency parameters puts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	it into "user" mode and disables the automatic changes.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 	automatic mode can be restored by setting "ctrl" to "auto".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605)   io.cost.model
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 	A read-write nested-keyed file with exists only on the root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 	This file configures the cost model of the IO cost model based
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 	controller (CONFIG_BLK_CGROUP_IOCOST) which currently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 	implements "io.weight" proportional control.  Lines are keyed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 	by $MAJ:$MIN device numbers and not ordered.  The line for a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 	given device is populated on the first write for the device on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 	"io.cost.qos" or "io.cost.model".  The following nested keys
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 	are defined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	  =====		================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 	  ctrl		"auto" or "user"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 	  model		The cost model in use - "linear"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 	  =====		================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 	When "ctrl" is "auto", the kernel may change all parameters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 	dynamically.  When "ctrl" is set to "user" or any other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 	parameters are written to, "ctrl" become "user" and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 	automatic changes are disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 	When "model" is "linear", the following model parameters are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 	defined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 	  =============	========================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	  [r|w]bps	The maximum sequential IO throughput
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 	  [r|w]seqiops	The maximum 4k sequential IOs per second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 	  [r|w]randiops	The maximum 4k random IOs per second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 	  =============	========================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 	From the above, the builtin linear model determines the base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 	costs of a sequential and random IO and the cost coefficient
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 	for the IO size.  While simple, this model can cover most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 	common device classes acceptably.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 	The IO cost model isn't expected to be accurate in absolute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 	sense and is scaled to the device behavior dynamically.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 	If needed, tools/cgroup/iocost_coef_gen.py can be used to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 	generate device-specific coefficients.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647)   io.weight
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 	A read-write flat-keyed file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 	The default is "default 100".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	The first line is the default weight applied to devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 	without specific override.  The rest are overrides keyed by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 	$MAJ:$MIN device numbers and not ordered.  The weights are in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 	the range [1, 10000] and specifies the relative amount IO time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 	the cgroup can use in relation to its siblings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 	The default weight can be updated by writing either "default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 	$WEIGHT" or simply "$WEIGHT".  Overrides can be set by writing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 	"$MAJ:$MIN $WEIGHT" and unset by writing "$MAJ:$MIN default".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 	An example read output follows::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 	  default 100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 	  8:16 200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 	  8:0 50
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667)   io.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 	A read-write nested-keyed file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 	cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 	BPS and IOPS based IO limit.  Lines are keyed by $MAJ:$MIN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 	device numbers and not ordered.  The following nested keys are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 	defined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 	  =====		==================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 	  rbps		Max read bytes per second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 	  wbps		Max write bytes per second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 	  riops		Max read IO operations per second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 	  wiops		Max write IO operations per second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 	  =====		==================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 	When writing, any number of nested key-value pairs can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 	specified in any order.  "max" can be specified as the value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 	to remove a specific limit.  If the same key is specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 	multiple times, the outcome is undefined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 	BPS and IOPS are measured in each IO direction and IOs are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 	delayed if limit is reached.  Temporary bursts are allowed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 	Setting read limit at 2M BPS and write at 120 IOPS for 8:16::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 	  echo "8:16 rbps=2097152 wiops=120" > io.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 	Reading returns the following::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 	  8:16 rbps=2097152 wbps=max riops=max wiops=120
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 	Write IOPS limit can be removed by writing the following::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 	  echo "8:16 wiops=max" > io.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 	Reading now returns the following::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 	  8:16 rbps=2097152 wbps=max riops=max wiops=max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706)   io.pressure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 	A read-only nested-key file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 	Shows pressure stall information for IO. See
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 	:ref:`Documentation/accounting/psi.rst <psi>` for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) Writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) ~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) Page cache is dirtied through buffered writes and shared mmaps and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) written asynchronously to the backing filesystem by the writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) mechanism.  Writeback sits between the memory and IO domains and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) regulates the proportion of dirty memory by balancing dirtying and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) write IOs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) The io controller, in conjunction with the memory controller,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) implements control of page cache writeback IOs.  The memory controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) defines the memory domain that dirty memory ratio is calculated and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) maintained for and the io controller defines the io domain which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) writes out dirty pages for the memory domain.  Both system-wide and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) per-cgroup dirty memory states are examined and the more restrictive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) of the two is enforced.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) cgroup writeback requires explicit support from the underlying
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) filesystem.  Currently, cgroup writeback is implemented on ext2, ext4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) btrfs, f2fs, and xfs.  On other filesystems, all writeback IOs are 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) attributed to the root cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) There are inherent differences in memory and writeback management
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) which affects how cgroup ownership is tracked.  Memory is tracked per
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) page while writeback per inode.  For the purpose of writeback, an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) inode is assigned to a cgroup and all IO requests to write dirty pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) from the inode are attributed to that cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) As cgroup ownership for memory is tracked per page, there can be pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) which are associated with different cgroups than the one the inode is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) associated with.  These are called foreign pages.  The writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) constantly keeps track of foreign pages and, if a particular foreign
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) cgroup becomes the majority over a certain period of time, switches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) the ownership of the inode to that cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) While this model is enough for most use cases where a given inode is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) mostly dirtied by a single cgroup even when the main writing cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) changes over time, use cases where multiple cgroups write to a single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) inode simultaneously are not supported well.  In such circumstances, a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) significant portion of IOs are likely to be attributed incorrectly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) As memory controller assigns page ownership on the first use and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) doesn't update it until the page is released, even if writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) strictly follows page ownership, multiple cgroups dirtying overlapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) areas wouldn't work as expected.  It's recommended to avoid such usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) patterns.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) The sysctl knobs which affect writeback behavior are applied to cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) writeback as follows.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762)   vm.dirty_background_ratio, vm.dirty_ratio
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 	These ratios apply the same to cgroup writeback with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 	amount of available memory capped by limits imposed by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 	memory controller and system-wide clean memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767)   vm.dirty_background_bytes, vm.dirty_bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 	For cgroup writeback, this is calculated into ratio against
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 	total available memory and applied the same way as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 	vm.dirty[_background]_ratio.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) IO Latency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) ~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) This is a cgroup v2 controller for IO workload protection.  You provide a group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) with a latency target, and if the average latency exceeds that target the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) controller will throttle any peers that have a lower latency target than the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) protected workload.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) The limits are only applied at the peer level in the hierarchy.  This means that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) in the diagram below, only groups A, B, and C will influence each other, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) groups D and F will influence each other.  Group G will influence nobody::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 			[root]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 		/	   |		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 		A	   B		C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 	       /  \        |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 	      D    F	   G
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) So the ideal way to configure this is to set io.latency in groups A, B, and C.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) Generally you do not want to set a value lower than the latency your device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) supports.  Experiment to find the value that works best for your workload.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) Start at higher than the expected latency for your device and watch the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) avg_lat value in io.stat for your workload group to get an idea of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) latency you see during normal operation.  Use the avg_lat value as a basis for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) your real setting, setting at 10-15% higher than the value in io.stat.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) How IO Latency Throttling Works
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) io.latency is work conserving; so as long as everybody is meeting their latency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) target the controller doesn't do anything.  Once a group starts missing its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) target it begins throttling any peer group that has a higher target than itself.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) This throttling takes 2 forms:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) - Queue depth throttling.  This is the number of outstanding IO's a group is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809)   allowed to have.  We will clamp down relatively quickly, starting at no limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810)   and going all the way down to 1 IO at a time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) - Artificial delay induction.  There are certain types of IO that cannot be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813)   throttled without possibly adversely affecting higher priority groups.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814)   includes swapping and metadata IO.  These types of IO are allowed to occur
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815)   normally, however they are "charged" to the originating group.  If the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816)   originating group is being throttled you will see the use_delay and delay
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817)   fields in io.stat increase.  The delay value is how many microseconds that are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818)   being added to any process that runs in this group.  Because this number can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819)   grow quite large if there is a lot of swapping or metadata IO occurring we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820)   limit the individual delay events to 1 second at a time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) Once the victimized group starts meeting its latency target again it will start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) unthrottling any peer groups that were throttled previously.  If the victimized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) group simply stops doing IO the global counter will unthrottle appropriately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) IO Latency Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) ~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829)   io.latency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 	This takes a similar format as the other controllers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 		"MAJOR:MINOR target=<target time in microseconds"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834)   io.stat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 	If the controller is enabled you will see extra stats in io.stat in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 	addition to the normal ones.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 	  depth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 		This is the current queue depth for the group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 	  avg_lat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 		This is an exponential moving average with a decay rate of 1/exp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 		bound by the sampling interval.  The decay rate interval can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 		calculated by multiplying the win value in io.stat by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 		corresponding number of samples based on the win value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 	  win
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 		The sampling window size in milliseconds.  This is the minimum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 		duration of time between evaluation events.  Windows only elapse
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 		with IO activity.  Idle periods extend the most recent window.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) IO Priority
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) ~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) A single attribute controls the behavior of the I/O priority cgroup policy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) namely the blkio.prio.class attribute. The following values are accepted for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) that attribute:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859)   no-change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 	Do not modify the I/O priority class.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862)   none-to-rt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 	For requests that do not have an I/O priority class (NONE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 	change the I/O priority class into RT. Do not modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 	the I/O priority class of other requests.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867)   restrict-to-be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 	For requests that do not have an I/O priority class or that have I/O
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 	priority class RT, change it into BE. Do not modify the I/O priority
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 	class of requests that have priority class IDLE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872)   idle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 	Change the I/O priority class of all requests into IDLE, the lowest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) 	I/O priority class.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) The following numerical values are associated with the I/O priority policies:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) +-------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) | no-change   | 0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) +-------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) | none-to-rt  | 1 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) +-------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) | rt-to-be    | 2 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) +-------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) | all-to-idle | 3 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) +-------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) The numerical value that corresponds to each I/O priority class is as follows:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) +-------------------------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) | IOPRIO_CLASS_NONE             | 0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) +-------------------------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) | IOPRIO_CLASS_RT (real-time)   | 1 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) +-------------------------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) | IOPRIO_CLASS_BE (best effort) | 2 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) +-------------------------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) | IOPRIO_CLASS_IDLE             | 3 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) +-------------------------------+---+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) The algorithm to set the I/O priority class for a request is as follows:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) - Translate the I/O priority class policy into a number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) - Change the request I/O priority class into the maximum of the I/O priority
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904)   class policy number and the numerical I/O priority class.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) PID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) ---
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) The process number controller is used to allow a cgroup to stop any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) new tasks from being fork()'d or clone()'d after a specified limit is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) reached.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) The number of tasks in a cgroup can be exhausted in ways which other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) controllers cannot prevent, thus warranting its own controller.  For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) example, a fork bomb is likely to exhaust the number of tasks before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) hitting memory restrictions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) Note that PIDs used in this controller refer to TIDs, process IDs as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) used by the kernel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) PID Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) ~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925)   pids.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 	cgroups.  The default is "max".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 	Hard limit of number of processes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931)   pids.current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 	A read-only single value file which exists on all cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 	The number of processes currently in the cgroup and its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 	descendants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) Organisational operations are not blocked by cgroup policies, so it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) possible to have pids.current > pids.max.  This can be done by either
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) setting the limit to be smaller than pids.current, or attaching enough
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) processes to the cgroup such that pids.current is larger than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) pids.max.  However, it is not possible to violate a cgroup PID policy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) through fork() or clone(). These will return -EAGAIN if the creation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) of a new process would cause a cgroup policy to be violated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) Cpuset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) ------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) The "cpuset" controller provides a mechanism for constraining
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) the CPU and memory node placement of tasks to only the resources
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) specified in the cpuset interface files in a task's current cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) This is especially valuable on large NUMA systems where placing jobs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) on properly sized subsets of the systems with careful processor and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) memory placement to reduce cross-node memory access and contention
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) can improve overall system performance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) The "cpuset" controller is hierarchical.  That means the controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) cannot use CPUs or memory nodes not allowed in its parent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) Cpuset Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) ~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964)   cpuset.cpus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 	A read-write multiple values file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 	cpuset-enabled cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 	It lists the requested CPUs to be used by tasks within this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 	cgroup.  The actual list of CPUs to be granted, however, is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 	subjected to constraints imposed by its parent and can differ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 	from the requested CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 	The CPU numbers are comma-separated numbers or ranges.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 	For example::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 	  # cat cpuset.cpus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 	  0-4,6,8-10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 	An empty value indicates that the cgroup is using the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 	setting as the nearest cgroup ancestor with a non-empty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 	"cpuset.cpus" or all the available CPUs if none is found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 	The value of "cpuset.cpus" stays constant until the next update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 	and won't be affected by any CPU hotplug events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986)   cpuset.cpus.effective
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 	A read-only multiple values file which exists on all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 	cpuset-enabled cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 	It lists the onlined CPUs that are actually granted to this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 	cgroup by its parent.  These CPUs are allowed to be used by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 	tasks within the current cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 	If "cpuset.cpus" is empty, the "cpuset.cpus.effective" file shows
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 	all the CPUs from the parent cgroup that can be available to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 	be used by this cgroup.  Otherwise, it should be a subset of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 	"cpuset.cpus" unless none of the CPUs listed in "cpuset.cpus"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 	can be granted.  In this case, it will be treated just like an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 	empty "cpuset.cpus".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 	Its value will be affected by CPU hotplug events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003)   cpuset.mems
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 	A read-write multiple values file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 	cpuset-enabled cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 	It lists the requested memory nodes to be used by tasks within
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 	this cgroup.  The actual list of memory nodes granted, however,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 	is subjected to constraints imposed by its parent and can differ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 	from the requested memory nodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 	The memory node numbers are comma-separated numbers or ranges.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 	For example::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 	  # cat cpuset.mems
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 	  0-1,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 	An empty value indicates that the cgroup is using the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 	setting as the nearest cgroup ancestor with a non-empty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 	"cpuset.mems" or all the available memory nodes if none
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 	is found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 	The value of "cpuset.mems" stays constant until the next update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 	and won't be affected by any memory nodes hotplug events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026)   cpuset.mems.effective
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 	A read-only multiple values file which exists on all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 	cpuset-enabled cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 	It lists the onlined memory nodes that are actually granted to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 	this cgroup by its parent. These memory nodes are allowed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 	be used by tasks within the current cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 	If "cpuset.mems" is empty, it shows all the memory nodes from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 	parent cgroup that will be available to be used by this cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 	Otherwise, it should be a subset of "cpuset.mems" unless none of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 	the memory nodes listed in "cpuset.mems" can be granted.  In this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 	case, it will be treated just like an empty "cpuset.mems".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 	Its value will be affected by memory nodes hotplug events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042)   cpuset.cpus.partition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 	A read-write single value file which exists on non-root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 	cpuset-enabled cgroups.  This flag is owned by the parent cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 	and is not delegatable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047)         It accepts only the following input values when written to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049)         "root"   - a partition root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050)         "member" - a non-root member of a partition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 	When set to be a partition root, the current cgroup is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 	root of a new partition or scheduling domain that comprises
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 	itself and all its descendants except those that are separate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 	partition roots themselves and their descendants.  The root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 	cgroup is always a partition root.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 	There are constraints on where a partition root can be set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 	It can only be set in a cgroup if all the following conditions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 	are true.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 	1) The "cpuset.cpus" is not empty and the list of CPUs are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 	   exclusive, i.e. they are not shared by any of its siblings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 	2) The parent cgroup is a partition root.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	3) The "cpuset.cpus" is also a proper subset of the parent's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 	   "cpuset.cpus.effective".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 	4) There is no child cgroups with cpuset enabled.  This is for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 	   eliminating corner cases that have to be handled if such a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 	   condition is allowed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 	Setting it to partition root will take the CPUs away from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 	effective CPUs of the parent cgroup.  Once it is set, this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 	file cannot be reverted back to "member" if there are any child
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 	cgroups with cpuset enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 	A parent partition cannot distribute all its CPUs to its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 	child partitions.  There must be at least one cpu left in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 	parent partition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 	Once becoming a partition root, changes to "cpuset.cpus" is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) 	generally allowed as long as the first condition above is true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 	the change will not take away all the CPUs from the parent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) 	partition and the new "cpuset.cpus" value is a superset of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 	children's "cpuset.cpus" values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 	Sometimes, external factors like changes to ancestors'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 	"cpuset.cpus" or cpu hotplug can cause the state of the partition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 	root to change.  On read, the "cpuset.sched.partition" file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 	can show the following values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 	"member"       Non-root member of a partition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 	"root"         Partition root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 	"root invalid" Invalid partition root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 	It is a partition root if the first 2 partition root conditions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) 	above are true and at least one CPU from "cpuset.cpus" is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 	granted by the parent cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 	A partition root can become invalid if none of CPUs requested
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 	in "cpuset.cpus" can be granted by the parent cgroup or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 	parent cgroup is no longer a partition root itself.  In this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 	case, it is not a real partition even though the restriction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 	of the first partition root condition above will still apply.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 	The cpu affinity of all the tasks in the cgroup will then be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 	associated with CPUs in the nearest ancestor partition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 	An invalid partition root can be transitioned back to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 	real partition root if at least one of the requested CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 	can now be granted by its parent.  In this case, the cpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 	affinity of all the tasks in the formerly invalid partition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 	will be associated to the CPUs of the newly formed partition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 	Changing the partition state of an invalid partition root to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) 	"member" is always allowed even if child cpusets are present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) Device controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) -----------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) Device controller manages access to device files. It includes both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) creation of new device files (using mknod), and access to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) existing device files.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) Cgroup v2 device controller has no interface files and is implemented
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) on top of cgroup BPF. To control access to device files, a user may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) create bpf programs of the BPF_CGROUP_DEVICE type and attach them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) to cgroups. On an attempt to access a device file, corresponding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) BPF programs will be executed, and depending on the return value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) the attempt will succeed or fail with -EPERM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) A BPF_CGROUP_DEVICE program takes a pointer to the bpf_cgroup_dev_ctx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) structure, which describes the device access attempt: access type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) (mknod/read/write) and device (type, major and minor numbers).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) If the program returns 0, the attempt fails with -EPERM, otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) it succeeds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) An example of BPF_CGROUP_DEVICE program may be found in the kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) source tree in the tools/testing/selftests/bpf/dev_cgroup.c file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) RDMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) ----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) The "rdma" controller regulates the distribution and accounting of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) RDMA resources.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) RDMA Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) ~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149)   rdma.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) 	A readwrite nested-keyed file that exists for all the cgroups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 	except root that describes current configured resource limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) 	for a RDMA/IB device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) 	Lines are keyed by device name and are not ordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 	Each line contains space separated resource name and its configured
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) 	limit that can be distributed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) 	The following nested keys are defined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) 	  ==========	=============================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 	  hca_handle	Maximum number of HCA Handles
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) 	  hca_object 	Maximum number of HCA Objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) 	  ==========	=============================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) 	An example for mlx4 and ocrdma device follows::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 	  mlx4_0 hca_handle=2 hca_object=2000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) 	  ocrdma1 hca_handle=3 hca_object=max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170)   rdma.current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) 	A read-only file that describes current resource usage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 	It exists for all the cgroup except root.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 	An example for mlx4 and ocrdma device follows::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) 	  mlx4_0 hca_handle=1 hca_object=20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 	  ocrdma1 hca_handle=1 hca_object=23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) HugeTLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) -------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) The HugeTLB controller allows to limit the HugeTLB usage per control group and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) enforces the controller limit during page fault.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) HugeTLB Interface Files
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) ~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188)   hugetlb.<hugepagesize>.current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) 	Show current usage for "hugepagesize" hugetlb.  It exists for all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) 	the cgroup except root.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192)   hugetlb.<hugepagesize>.max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) 	Set/show the hard limit of "hugepagesize" hugetlb usage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) 	The default value is "max".  It exists for all the cgroup except root.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196)   hugetlb.<hugepagesize>.events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) 	A read-only flat-keyed file which exists on non-root cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 	  max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) 		The number of allocation failure due to HugeTLB limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202)   hugetlb.<hugepagesize>.events.local
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) 	Similar to hugetlb.<hugepagesize>.events but the fields in the file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 	are local to the cgroup i.e. not hierarchical. The file modified event
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) 	generated on this file reflects only the local events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) Misc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) ----
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) perf_event
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) ~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) perf_event controller, if not mounted on a legacy hierarchy, is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) automatically enabled on the v2 hierarchy so that perf events can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) always be filtered by cgroup v2 path.  The controller can still be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) moved to a legacy hierarchy after v2 hierarchy is populated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) Non-normative information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) -------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) This section contains information that isn't considered to be a part of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) the stable kernel API and so is subject to change.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) CPU controller root cgroup process behaviour
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) When distributing CPU cycles in the root cgroup each thread in this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) cgroup is treated as if it was hosted in a separate child cgroup of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) root cgroup. This child cgroup weight is dependent on its thread nice
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) level.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) For details of this mapping see sched_prio_to_weight array in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) kernel/sched/core.c file (values from this array should be scaled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) appropriately so the neutral - nice 0 - value is 100 instead of 1024).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) IO controller root cgroup process behaviour
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) Root cgroup processes are hosted in an implicit leaf child node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) When distributing IO resources this implicit child node is taken into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) account as if it was a normal child cgroup of the root cgroup with a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) weight value of 200.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) Namespace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) =========
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) Basics
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) ------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) cgroup namespace provides a mechanism to virtualize the view of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) "/proc/$PID/cgroup" file and cgroup mounts.  The CLONE_NEWCGROUP clone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) flag can be used with clone(2) and unshare(2) to create a new cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) namespace.  The process running inside the cgroup namespace will have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) its "/proc/$PID/cgroup" output restricted to cgroupns root.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) cgroupns root is the cgroup of the process at the time of creation of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) the cgroup namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) Without cgroup namespace, the "/proc/$PID/cgroup" file shows the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) complete path of the cgroup of a process.  In a container setup where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) a set of cgroups and namespaces are intended to isolate processes the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) "/proc/$PID/cgroup" file may leak potential system level information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) to the isolated processes.  For Example::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268)   # cat /proc/self/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269)   0::/batchjobs/container_id1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) The path '/batchjobs/container_id1' can be considered as system-data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) and undesirable to expose to the isolated processes.  cgroup namespace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) can be used to restrict visibility of this path.  For example, before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) creating a cgroup namespace, one would see::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276)   # ls -l /proc/self/ns/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277)   lrwxrwxrwx 1 root root 0 2014-07-15 10:37 /proc/self/ns/cgroup -> cgroup:[4026531835]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278)   # cat /proc/self/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279)   0::/batchjobs/container_id1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) After unsharing a new namespace, the view changes::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283)   # ls -l /proc/self/ns/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284)   lrwxrwxrwx 1 root root 0 2014-07-15 10:35 /proc/self/ns/cgroup -> cgroup:[4026532183]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285)   # cat /proc/self/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286)   0::/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) When some thread from a multi-threaded process unshares its cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) namespace, the new cgroupns gets applied to the entire process (all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) the threads).  This is natural for the v2 hierarchy; however, for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) legacy hierarchies, this may be unexpected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) A cgroup namespace is alive as long as there are processes inside or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) mounts pinning it.  When the last usage goes away, the cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) namespace is destroyed.  The cgroupns root and the actual cgroups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) remain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) The Root and Views
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) ------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) The 'cgroupns root' for a cgroup namespace is the cgroup in which the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) process calling unshare(2) is running.  For example, if a process in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) /batchjobs/container_id1 cgroup calls unshare, cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) /batchjobs/container_id1 becomes the cgroupns root.  For the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) init_cgroup_ns, this is the real root ('/') cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) The cgroupns root cgroup does not change even if the namespace creator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) process later moves to a different cgroup::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311)   # ~/unshare -c # unshare cgroupns in some cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312)   # cat /proc/self/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313)   0::/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314)   # mkdir sub_cgrp_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315)   # echo 0 > sub_cgrp_1/cgroup.procs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316)   # cat /proc/self/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317)   0::/sub_cgrp_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) Each process gets its namespace-specific view of "/proc/$PID/cgroup"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) Processes running inside the cgroup namespace will be able to see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) cgroup paths (in /proc/self/cgroup) only inside their root cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) From within an unshared cgroupns::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325)   # sleep 100000 &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326)   [1] 7353
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327)   # echo 7353 > sub_cgrp_1/cgroup.procs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328)   # cat /proc/7353/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329)   0::/sub_cgrp_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) From the initial cgroup namespace, the real cgroup path will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) visible::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334)   $ cat /proc/7353/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335)   0::/batchjobs/container_id1/sub_cgrp_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) From a sibling cgroup namespace (that is, a namespace rooted at a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) different cgroup), the cgroup path relative to its own cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) namespace root will be shown.  For instance, if PID 7353's cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) namespace root is at '/batchjobs/container_id2', then it will see::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342)   # cat /proc/7353/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343)   0::/../container_id2/sub_cgrp_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) Note that the relative path always starts with '/' to indicate that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) its relative to the cgroup namespace root of the caller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) Migration and setns(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) ----------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) Processes inside a cgroup namespace can move into and out of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) namespace root if they have proper access to external cgroups.  For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) example, from inside a namespace with cgroupns root at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) /batchjobs/container_id1, and assuming that the global hierarchy is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) still accessible inside cgroupns::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358)   # cat /proc/7353/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359)   0::/sub_cgrp_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360)   # echo 7353 > batchjobs/container_id2/cgroup.procs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361)   # cat /proc/7353/cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362)   0::/../container_id2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) Note that this kind of setup is not encouraged.  A task inside cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) namespace should only be exposed to its own cgroupns hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) setns(2) to another cgroup namespace is allowed when:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) (a) the process has CAP_SYS_ADMIN against its current user namespace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) (b) the process has CAP_SYS_ADMIN against the target cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371)     namespace's userns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) No implicit cgroup changes happen with attaching to another cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) namespace.  It is expected that the someone moves the attaching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) process under the target cgroup namespace root.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) Interaction with Other Namespaces
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) ---------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) Namespace specific cgroup hierarchy can be mounted by a process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) running inside a non-init cgroup namespace::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384)   # mount -t cgroup2 none $MOUNT_POINT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) This will mount the unified cgroup hierarchy with cgroupns root as the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) filesystem root.  The process needs CAP_SYS_ADMIN against its user and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) mount namespaces.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) The virtualization of /proc/self/cgroup file combined with restricting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) the view of cgroup hierarchy by namespace-private cgroupfs mount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) provides a properly isolated cgroup view inside the container.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) Information on Kernel Programming
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) =================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) This section contains kernel programming information in the areas
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) where interacting with cgroup is necessary.  cgroup core and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) controllers are not covered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) Filesystem Support for Writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) --------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) A filesystem can support cgroup writeback by updating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) address_space_operations->writepage[s]() to annotate bio's using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) following two functions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410)   wbc_init_bio(@wbc, @bio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 	Should be called for each bio carrying writeback data and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 	associates the bio with the inode's owner cgroup and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 	corresponding request queue.  This must be called after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 	a queue (device) has been associated with the bio and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 	before submission.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417)   wbc_account_cgroup_owner(@wbc, @page, @bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) 	Should be called for each data segment being written out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) 	While this function doesn't care exactly when it's called
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 	during the writeback session, it's the easiest and most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) 	natural to call it as data segments are added to a bio.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) With writeback bio's annotated, cgroup support can be enabled per
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) super_block by setting SB_I_CGROUPWB in ->s_iflags.  This allows for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) selective disabling of cgroup writeback support which is helpful when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) certain filesystem features, e.g. journaled data mode, are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) incompatible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) wbc_init_bio() binds the specified bio to its cgroup.  Depending on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) the configuration, the bio may be executed at a lower priority and if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) the writeback session is holding shared resources, e.g. a journal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) entry, may lead to priority inversion.  There is no one easy solution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) for the problem.  Filesystems can try to work around specific problem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) cases by skipping wbc_init_bio() and using bio_associate_blkg()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) directly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) Deprecated v1 Core Features
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) ===========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) - Multiple hierarchies including named ones are not supported.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) - All v1 mount options are not supported.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) - The "tasks" file is removed and "cgroup.procs" is not sorted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) - "cgroup.clone_children" is removed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) - /proc/cgroups is meaningless for v2.  Use "cgroup.controllers" file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450)   at the root instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) Issues with v1 and Rationales for v2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) ====================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) Multiple Hierarchies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) --------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) cgroup v1 allowed an arbitrary number of hierarchies and each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) hierarchy could host any number of controllers.  While this seemed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) provide a high level of flexibility, it wasn't useful in practice.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) For example, as there is only one instance of each controller, utility
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) type controllers such as freezer which can be useful in all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) hierarchies could only be used in one.  The issue is exacerbated by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) the fact that controllers couldn't be moved to another hierarchy once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) hierarchies were populated.  Another issue was that all controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) bound to a hierarchy were forced to have exactly the same view of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) hierarchy.  It wasn't possible to vary the granularity depending on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) the specific controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) In practice, these issues heavily limited which controllers could be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) put on the same hierarchy and most configurations resorted to putting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) each controller on its own hierarchy.  Only closely related ones, such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) as the cpu and cpuacct controllers, made sense to be put on the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) hierarchy.  This often meant that userland ended up managing multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) similar hierarchies repeating the same steps on each hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) whenever a hierarchy management operation was necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) Furthermore, support for multiple hierarchies came at a steep cost.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) It greatly complicated cgroup core implementation but more importantly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) the support for multiple hierarchies restricted how cgroup could be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) used in general and what controllers was able to do.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) There was no limit on how many hierarchies there might be, which meant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) that a thread's cgroup membership couldn't be described in finite
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) length.  The key might contain any number of entries and was unlimited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) in length, which made it highly awkward to manipulate and led to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) addition of controllers which existed only to identify membership,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) which in turn exacerbated the original problem of proliferating number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) of hierarchies.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) Also, as a controller couldn't have any expectation regarding the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) topologies of hierarchies other controllers might be on, each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) controller had to assume that all other controllers were attached to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) completely orthogonal hierarchies.  This made it impossible, or at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) least very cumbersome, for controllers to cooperate with each other.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) In most use cases, putting controllers on hierarchies which are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) completely orthogonal to each other isn't necessary.  What usually is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) called for is the ability to have differing levels of granularity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) depending on the specific controller.  In other words, hierarchy may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) be collapsed from leaf towards root when viewed from specific
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) controllers.  For example, a given configuration might not care about
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) how memory is distributed beyond a certain level while still wanting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) to control how CPU cycles are distributed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) Thread Granularity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) ------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) cgroup v1 allowed threads of a process to belong to different cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) This didn't make sense for some controllers and those controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) ended up implementing different ways to ignore such situations but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) much more importantly it blurred the line between API exposed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) individual applications and system management interface.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) Generally, in-process knowledge is available only to the process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) itself; thus, unlike service-level organization of processes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) categorizing threads of a process requires active participation from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) the application which owns the target process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) cgroup v1 had an ambiguously defined delegation model which got abused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) in combination with thread granularity.  cgroups were delegated to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) individual applications so that they can create and manage their own
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) sub-hierarchies and control resource distributions along them.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) effectively raised cgroup to the status of a syscall-like API exposed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) to lay programs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) First of all, cgroup has a fundamentally inadequate interface to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) exposed this way.  For a process to access its own knobs, it has to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) extract the path on the target hierarchy from /proc/self/cgroup,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) construct the path by appending the name of the knob to the path, open
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) and then read and/or write to it.  This is not only extremely clunky
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) and unusual but also inherently racy.  There is no conventional way to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) define transaction across the required steps and nothing can guarantee
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) that the process would actually be operating on its own sub-hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) cgroup controllers implemented a number of knobs which would never be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) accepted as public APIs because they were just adding control knobs to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) system-management pseudo filesystem.  cgroup ended up with interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) knobs which were not properly abstracted or refined and directly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) revealed kernel internal details.  These knobs got exposed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) individual applications through the ill-defined delegation mechanism
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) effectively abusing cgroup as a shortcut to implementing public APIs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) without going through the required scrutiny.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) This was painful for both userland and kernel.  Userland ended up with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) misbehaving and poorly abstracted interfaces and kernel exposing and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) locked into constructs inadvertently.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) Competition Between Inner Nodes and Threads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) -------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) cgroup v1 allowed threads to be in any cgroups which created an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) interesting problem where threads belonging to a parent cgroup and its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) children cgroups competed for resources.  This was nasty as two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) different types of entities competed and there was no obvious way to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) settle it.  Different controllers did different things.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) The cpu controller considered threads and cgroups as equivalents and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) mapped nice levels to cgroup weights.  This worked for some cases but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) fell flat when children wanted to be allocated specific ratios of CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) cycles and the number of internal threads fluctuated - the ratios
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) constantly changed as the number of competing entities fluctuated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) There also were other issues.  The mapping from nice level to weight
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) wasn't obvious or universal, and there were various other knobs which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) simply weren't available for threads.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) The io controller implicitly created a hidden leaf node for each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) cgroup to host the threads.  The hidden leaf had its own copies of all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) the knobs with ``leaf_`` prefixed.  While this allowed equivalent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) control over internal threads, it was with serious drawbacks.  It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) always added an extra layer of nesting which wouldn't be necessary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) otherwise, made the interface messy and significantly complicated the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) implementation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) The memory controller didn't have a way to control what happened
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) between internal tasks and child cgroups and the behavior was not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) clearly defined.  There were attempts to add ad-hoc behaviors and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) knobs to tailor the behavior to specific workloads which would have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) led to problems extremely difficult to resolve in the long term.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) Multiple controllers struggled with internal tasks and came up with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) different ways to deal with it; unfortunately, all the approaches were
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) severely flawed and, furthermore, the widely different behaviors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) made cgroup as a whole highly inconsistent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) This clearly is a problem which needs to be addressed from cgroup core
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) in a uniform way.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) Other Interface Issues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) ----------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) cgroup v1 grew without oversight and developed a large number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) idiosyncrasies and inconsistencies.  One issue on the cgroup core side
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) was how an empty cgroup was notified - a userland helper binary was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) forked and executed for each event.  The event delivery wasn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) recursive or delegatable.  The limitations of the mechanism also led
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) to in-kernel event delivery filtering mechanism further complicating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) the interface.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) Controller interfaces were problematic too.  An extreme example is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) controllers completely ignoring hierarchical organization and treating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) all cgroups as if they were all located directly under the root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) cgroup.  Some controllers exposed a large amount of inconsistent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) implementation details to userland.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) There also was no consistency across controllers.  When a new cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) was created, some controllers defaulted to not imposing extra
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) restrictions while others disallowed any resource usage until
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) explicitly configured.  Configuration knobs for the same type of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) control used widely differing naming schemes and formats.  Statistics
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) and information knobs were named arbitrarily and used different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) formats and units even in the same controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) cgroup v2 establishes common conventions where appropriate and updates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) controllers so that they expose minimal and consistent interfaces.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) Controller Issues and Remedies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) ------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) Memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) ~~~~~~
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) The original lower boundary, the soft limit, is defined as a limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) that is per default unset.  As a result, the set of cgroups that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) global reclaim prefers is opt-in, rather than opt-out.  The costs for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) optimizing these mostly negative lookups are so high that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) implementation, despite its enormous size, does not even provide the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) basic desirable behavior.  First off, the soft limit has no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) hierarchical meaning.  All configured groups are organized in a global
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) rbtree and treated like equal peers, regardless where they are located
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) in the hierarchy.  This makes subtree delegation impossible.  Second,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) the soft limit reclaim pass is so aggressive that it not just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) introduces high allocation latencies into the system, but also impacts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) system performance due to overreclaim, to the point where the feature
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) becomes self-defeating.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) The memory.low boundary on the other hand is a top-down allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) reserve.  A cgroup enjoys reclaim protection when it's within its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) effective low, which makes delegation of subtrees possible. It also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) enjoys having reclaim pressure proportional to its overage when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) above its effective low.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) The original high boundary, the hard limit, is defined as a strict
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) limit that can not budge, even if the OOM killer has to be called.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) But this generally goes against the goal of making the most out of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) available memory.  The memory consumption of workloads varies during
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) runtime, and that requires users to overcommit.  But doing that with a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) strict upper limit requires either a fairly accurate prediction of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) working set size or adding slack to the limit.  Since working set size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) estimation is hard and error prone, and getting it wrong results in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) OOM kills, most users tend to err on the side of a looser limit and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) end up wasting precious resources.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) The memory.high boundary on the other hand can be set much more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) conservatively.  When hit, it throttles allocations by forcing them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) into direct reclaim to work off the excess, but it never invokes the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) OOM killer.  As a result, a high boundary that is chosen too
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) aggressively will not terminate the processes, but instead it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665) lead to gradual performance degradation.  The user can monitor this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) and make corrections until the minimal memory footprint that still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) gives acceptable performance is found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) In extreme cases, with many concurrent allocations and a complete
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) breakdown of reclaim progress within the group, the high boundary can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) be exceeded.  But even then it's mostly better to satisfy the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) allocation from the slack available in other groups or the rest of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) system than killing the group.  Otherwise, memory.max is there to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) limit this type of spillover and ultimately contain buggy or even
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) malicious applications.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) Setting the original memory.limit_in_bytes below the current usage was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) subject to a race condition, where concurrent charges could cause the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) limit setting to fail. memory.max on the other hand will first set the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) limit to prevent new charges, and then reclaim and OOM kill until the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) new limit is met - or the task writing to memory.max is killed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) The combined memory+swap accounting and limiting is replaced by real
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) control over swap space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) The main argument for a combined memory+swap facility in the original
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) cgroup design was that global or parental pressure would always be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) able to swap all anonymous memory of a child group, regardless of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) child's own (possibly untrusted) configuration.  However, untrusted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) groups can sabotage swapping by other means - such as referencing its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) anonymous memory in a tight loop - and an admin can not assume full
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) swappability when overcommitting untrusted jobs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) For trusted jobs, on the other hand, a combined counter is not an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) intuitive userspace interface, and it flies in the face of the idea
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) that cgroup controllers should account and limit specific physical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) resources.  Swap space is a resource like all others in the system,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) and that's why unified hierarchy allows distributing it separately.